Math, asked by subhan34291, 7 months ago

a rope is cut into three peaces in ratio 1:3:5.given that the length of the longest piece is 35m find @ the length of origional rope and the length of the shortest piece of rope​

Answers

Answered by abhi569
20

Answer:

63 m & 7 m

Step-by-step explanation:

As the ratio is 1:3;5, let the length of ropes be a, 3a and 5a.

Longest part = 5a. But in question it is 35 m.

=> 5a = 35 m → a = 7 m

Hence,

a. Total length = a + 3a + 5a

= 9a = 9(7m)

= 63 m

b. Shortest part = a = 7 m

Answered by Anonymous
20

given \\  \\ ratio \:  \:  \: of \:  \:  \: rope \:  \:  \: cut \:  \:  \: 1.3.5 \\  \\ longest \:  \:  \: length = 35cm \\  \\ \:    to \:  \:  \: find = (1)original \: length \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: = (2)shortest \:  \:  \:  \: length \\  \\ solution =  \\  \\ let \:  \: x  \:  \: be \:  \: the \:  \:  \: multiple \:  \:  \: of \:  \:  \: ratios \\  \\  \\  \\ hence \:  \:  \: x.3x.5x \:  \:  \: new \:  \:  \: ratios \\  \\ 5x = 35 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ....(given \:  \: large \:  \: piece) \\  \\ 5x = 35 \\  \\ x = 7 \\  \\ hence \\  \\ x  + 3x + 5x = 9x \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 9 \times 7 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:= 63 \\  \\  short \:  \:  \: piece \:  \:  =  \: 7cm \\  \\  \\  \\  \\ please\:  \:  \: mark \:  \:  \: me \:  \: as \:  \:  \: brainlist \:  \:  \:

Similar questions