A round bottom flask contains 360 ml of the gas at 29⁰C and 70 cm of Hg. Find the final pressure when it is transferred in a conical flask of 85 ml capacity at a temperature of 57⁰C.
Answers
Answer:
For flask 1:
P1V1=nRT1
or, P1V1T1=nR ...(1)
Similarly, for flask 2
P2V2T2=nR ...(2)
Equating both equations we get,
P1V1T1=P2V2T2P1= 70 cm of Hg =7076=0.9210 atm , P2 = ?V1 = 300 ml , V2 = 75 mlT1=27+273 = 300 K , T2 = 57 + 273 = 330 KNow, 0.9210×300300=P2×75330or, P2 = 4.0526 atm or 307.9 mm of Hg
Answer:
Final pressure of gas is 205.33 cm of Hg
\mathfrak{\underline{\underline{Explanation:}}}
Initial Conditions
\sf{P_1 = 70 cm \: of \: Hg}\\ \sf{V_1=200ml}\\ \sf{V_1=200ml}\\ \sf{T_1=27°C = 300K}
Final Conditions
\sf{P_2 = x}\\ \sf{V_2=75ml}\\ \sf{V_1=200ml}\\ \sf{T_2=57°C = 330K}
Using the gas equation \sf{ \dfrac{P_1V_1}{T_1}=\dfrac{P_2V_2}{T_2}}
Substituting the values,
\sf{ \dfrac{70 \times 200}{300}=\dfrac{P_2 \times 75}{330}}
\sf{P_2 = \dfrac{70 \times 200 \times 330}{75 \times 300} }
\sf \: P_2 = 205.33cm \: of \: Hg
∴ The final pressure of the gas is 205.33 cm of Hg