Physics, asked by deeptygurung8, 10 months ago


A rubber ball floats on water with its 1/3 volume outside water. What is the density of rubber?​

Answers

Answered by Anonymous
9

\large\underline{\underline{\sf Given:}}

  • Volume of rubber is ⅓ outside of water .

\large\underline{\underline{\sf To\:Find:}}

  • Density of rubber \sf{(\rho_{water}} = ?

\large\underline{\underline{\sf Solution:}}

\textsf{According\:to\: Principle\:of\: floatation\:the\:boyancy\:force\:is\:equal\:to\:weight\:of\:body}

•°•\large{\boxed{\sf W_{rubber}=W_{water} }}

\large\implies{\sf m_rg=m_wg}

We know :- Mass = Density × Volume

•°• \large\implies{\sf \rho_r×V_r=\rho_w×V_w }

\implies{\sf \rho_r×\frac{4}{3}×π×r^3=1000×\left(\frac{2}{3}×\frac{4}{3}×πr^3\right)\rho_w}

We know :- \sf{\rho_w=1000kg/m^3}

\implies{\sf \rho_r×\frac{4}{3}×π×r^3=1000×\left(\frac{2}{3}×\frac{4}{3}×πr^3\right)×1000}

\large\implies{\sf \rho_r=2×\dfrac{1000}{3}}

\large\implies{\sf \rho_w=666.6kg/m^3 }

\Large\underline{\underline{\sf Answer:}}

\large\underline{\underline{\sf Density\:of\:Rubber\:is\:666.6kg/m^3}}

Attachments:
Similar questions