Math, asked by meandonlyme9427, 1 month ago

A sailing boat with triangular masts is shown below. Two right triangles can be observed. Triangles ABC and ABD, both right angled at B. The distance BC= 1m, BD = 2m and height AB = 4m 1) The value of Sec D is * 1 point 1/(√5) (√5)/2 √5 2/(√5) 2) The value of cosec C is * 1 point 4/(√17) 1/(√17) √17 (√17)/4 3) The value of Sin² C + cos² D is : * 1 point 0 1 97/85 85/97 4) If Sin P = 3/4 , then Cos P is * 1 point 4/3 7/3 (√7)/4 (√7)/3 5) If 3 TanP = 4, then the value of (3Sinp+2CosP)/(3SinP-2Cos P) * 1 point 4 11/15 7/15 3

Answers

Answered by pulakmath007
2

SOLUTION

TO DETERMINE

1. If sin P = 3/4 , then cos P is

2. If 3 tanP = 4, then the value of (3 sin P + 2 CosP)/(3SinP-2Cos P)

EVALUATION

1. Here it is given that

sin P = 3/4

Thus we get

cos P

 \displaystyle \sf{ =  \sqrt{1 -  { \sin}^{2} P} }

 \displaystyle \sf{ =  \sqrt{1 -  \frac{9}{16} } }

 \displaystyle \sf{ =  \sqrt{ \frac{16 - 9}{16} } }

 \displaystyle \sf{ =  \sqrt{ \frac{7}{16} } }

 \displaystyle \sf{ = \frac{ \sqrt{7} }{4} }

2. Here it is given that 3 tanP = 4

Thus we have

 \displaystyle \sf{  \tan P =  \frac{4}{3} }

Now

\displaystyle \sf{  \frac{3 \sin P + 2 \cos P}{3 \sin P  -  2 \cos P} }

\displaystyle \sf{  =  \frac{3 \tan P + 2 }{3 \tan P  -  2 } }

\displaystyle \sf{  =  \frac{4 + 2 }{4  -  2 } }

\displaystyle \sf{  =  \frac{6 }{2 } }

\displaystyle \sf{  = 3 }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions