a sailor goes 8 km downstream in 40 minutes and return in one hour determine the speed of the Sailor in still water and the speed of the current
Answers
Answered by
5
Let the speed of sailor in still water be x km/hr and the speed of stream be y km/hr.
The speed of boat (upstream) = (x - y) km/hr.
The speed of boat (downstream) = (x + y) km/hr.
Now,
A.T.Q.
(1) 8 / x + y = 40 / 60 (Since, Time = Distance / Speed)
===> x + y = 12 ----------------- (1)
(2) 8/ x - y = 1 (Since, Time = Distance / Speed)
===> x - y = 8 ------------------- (2)
On adding (1) and (2),
===> x + y + x - y = 12 + 8
===> 2 x = 20
===> x = 10
By (1),
===> 10 + y = 12
===> y = 2
Ans :- The speed of sailor in still water is 10 km / hr.
The speed of stream is 2 km / hr.
The speed of boat (upstream) = (x - y) km/hr.
The speed of boat (downstream) = (x + y) km/hr.
Now,
A.T.Q.
(1) 8 / x + y = 40 / 60 (Since, Time = Distance / Speed)
===> x + y = 12 ----------------- (1)
(2) 8/ x - y = 1 (Since, Time = Distance / Speed)
===> x - y = 8 ------------------- (2)
On adding (1) and (2),
===> x + y + x - y = 12 + 8
===> 2 x = 20
===> x = 10
By (1),
===> 10 + y = 12
===> y = 2
Ans :- The speed of sailor in still water is 10 km / hr.
The speed of stream is 2 km / hr.
Aishez:
ur welcome
Answered by
1
___ _ ___________
⇒ x + y = 12
⇒ x - y = 8
--------------
⇒ 2x = 20,
⇒ 2y = 4
⇒ x = 10,
⇒ y = 2
⇒Speed of stream = 2 kmph, Speed of boat = 10 kmph
Similar questions
Math,
8 months ago
English,
8 months ago
Chemistry,
8 months ago
Biology,
1 year ago
Social Sciences,
1 year ago