A sample of size n is drawn from each of the four
normal populations which have the same variance
sigma^2 . The means of the four populations are
a+b + c , a +b - c , a - b + c and a - b - c . What are
M.L.E.’s for a, b, c and sigma^2 ?
Answers
Answer:
Given : a + b + c = π/2
To find : ∑ Cos(b+c)/cosbCosc
Solution:
a + b + c = π/2
∑ Cos(b+c)/cosbCosc
= Cos(b+c)/cosbCosc + Cos(c+a)/coscCosa + Cos(a+b)/cosaCosb
Cos(b+c)/cosbCosc = (CosbCosc - SinbSinc)/cosbCosc = 1 - tanbtanc
Cos(c+a)/coscCosa = 1 - tanctana
Cos(a+b)/cosaCosb = 1 - tantanb
=> ∑ Cos(b+c)/cosbCosc = 1 - tanbtanc + 1 - tanctana + 1 - tantanb
=> ∑ Cos(b+c)/cosbCosc = 3 - (tanatanb + tanbtanc + tanctana)
a + b + c = π/2
=> a + b = π/2 - c
taking tan both Sides
=> tan (a + b ) = tan (π/2 - c)
=> (tana + tanb)/(1 - tanatanb) = Cotc
=> (tana + tanb)/(1 - tanatanb) = 1/tanc
=> tanatanc + tanbtanc = 1 - tantanb
=> tantanb + tanbtanc + tanctana = 1
=> ∑ Cos(b+c)/cosbCosc = 3 - (1)
=> ∑ Cos(b+c)/cosbCosc = 2
∑ Cos(b+c)/cosbCosc = 2