Physics, asked by sameermughal0786123, 5 months ago

A satellite in a circular orbit of radius R has a period of 4 hours. Another satellite with orbital radius 3R around the, same planet will have a period (in hours) ​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
47

Answer

  • There are two satellites
  • Satellite¹ takes 4 hours to orbit around a circular orbit of radius R
  • Satellite² orbits on a circular path of radius 3R
  • Time taken = ?

━━━━━━━━━━━━━━

\quad Here we use Kepler's Law which states that the square of the time taken will be equal to the cube of the radius

\quad ● T² ∝ R³

\sf:\implies {\bigg\lgroup \dfrac{T_1}{T_2} \bigg\rgroup}^{2} = {\bigg\lgroup \dfrac{R_2}{R_1}\bigg\rgroup}^{3}

\sf:\implies \bigg\lgroup \dfrac{T_1}{T_2} \bigg\rgroup = \sqrt{{\bigg\lgroup \dfrac{R_2}{R_1}\bigg\rgroup}^{3}}

\sf:\implies \bigg\lgroup \dfrac{T_1}{T_2} \bigg\rgroup = {\bigg\lgroup \dfrac{R_2}{R_1}\bigg\rgroup}^{\frac{1}{2}\times 3}

\sf:\implies \bigg\lgroup \dfrac{T_1}{T_2} \bigg\rgroup = {\bigg\lgroup \dfrac{R_2}{R_1}\bigg\rgroup}^{\frac{3}{2}}

\sf:\implies T_2 = T_1 \times {\bigg\lgroup \dfrac{R_2}{R_1}\bigg\rgroup}^{\frac{3}{2}}

\quad ● Here the R₁ will be R, then T₁ is 4 Hours and R₂ will be 3R

\sf:\implies T_2 = 4\times {\bigg\lgroup \dfrac{3R}{R}\bigg\rgroup}^{\frac{3}{2}}

\sf:\implies T_2 = 4\times 3^{\frac{3}{2}}

:\implies\underline{\boxed{\pink{\mathfrak{ t_2 = 4\sqrt{27} \ hours}}}}

Answered by Anonymous
91

 \huge{ \underline { \rm{ \large{ \pink{Given:}}}}}

  • Satellite in a circular orbit of radius R has a period of 4 hours
  • Another satellite with orbital radius 3R

 \huge{ \underline{ \rm{ \large{ \red{Find:}}}}}

  • Time of second satellite???

 \huge{ \underline{ \rm{ \green{ \large{Solution:}}}}}

  • From Kepler's 3rd law T² is proportional to r³, the orbital period squared is proportional to the distance cubes

  • T² ∝ R³

  • (T1/T2) ² = (R1/R2) ³

 { \implies{ \sf{ \frac{ {(4)}^{2} }{ {(T _{2})}^{2} }  =  \frac{ {(R)}^{3} }{ {(3R)}^{3} } }}}

 \:  \:  \:

{ \implies{ \sf{ {( T_{2} )}^{2}  = 27 \times 16}}}

 \:  \:  \:  \:

{ \implies{ \sf{ { T_{2} } =   \sqrt{27 \times 16} }}}

 \:  \:  \:  \:

{ \implies{ \sf{ \blue{ T_{2} = 4 \sqrt{27} hours }}}}

Therefore,

  • Time of second satellite = 427 hours
Similar questions