Physics, asked by StrongGirl, 9 months ago

A satellite is revolving around the earth. ratio of its orbital speed and escape speed will be?
1/√2
√2
√3
2√2​

Answers

Answered by BrainlyConqueror0901
51

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{v_{o}:v_{esc}=1:\sqrt{2}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:   \implies Satellite \: revolving \: around \: the \: earth \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  \frac{Velocity \: of \: orbital \: speed( v_{o}) }{Escape \: velocity (v_{esc}) }  =?

• According to given question :

 \tt \circ \:  m_{1}   = Mass \: of \: earth \\  \\  \tt \circ \:  m_{2}  = Mass \: of \: sattelite \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  v_{o} =  \sqrt{ \frac{G m_{1} m_{2}} {r} } \\  \\  \tt \circ \:  m_{2}   <  <  <  m_{1}  \\  \\  \tt \circ \:  m_{1} m_{2}   \approx  m_{1}  \\  \\ \tt:  \implies  v_{o} =  \sqrt{ \frac{G m_{1} }{r} }  -  -  -  -  - (1) \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  v_{esc} =  \sqrt{ \frac{2Gm_{1} }{r} }  -  -  -  -  - (2) \\  \\  \bold{For \: Ratio : } \\  \tt:  \implies   \frac{ v_{o} }{ v_{esc} }  =  \huge{\frac{ \sqrt{ \frac{Gm_{1} }{r} } }{ \sqrt{ \frac{2G  m_{1} }{r} } }}  \\  \\  \green{\tt:  \implies   \frac{ v_{o} }{ v_{esc} }  = \frac{1}{ \sqrt{2} } } \\  \\ \green{\tt \therefore Ratio \: of \:  v_{0} : v_{esc} \: is \: 1 :  \sqrt{2} }

Similar questions