Math, asked by sweetyrajyadav022, 1 month ago

A Scooter acquires a velocity 36km/h
In 10 Seconds Just after the start. it
takes 20 Seconds to stop. Calculate the
Acceleration in the two cases.​

Answers

Answered by Anonymous
66

Answer:

Given :-

  • A scooter acquires a velocity 36 km/h in 10 seconds just after the start and it takes 20 seconds to stop.

To Find :-

  • What is the acceleration in both cases.

Formula Used :-

\clubsuit First Equation Of Motion Formula :

\longmapsto \sf\boxed{\bold{\pink{v =\: u + at}}}\\

where,

  • v = Final Velocity
  • u = Initial Velocity
  • a = Acceleration
  • t = Time

Solution :-

{\normalsize{\bold{\purple{\underline{\bigstar\: In\: first\: case\: :-}}}}}\\

First, we have to convert final velocity km/h to m/s :

\implies \sf Final\: Velocity =\: 36\: km/h

\implies \sf Final\: Velocity =\: 36 \times \dfrac{5}{18}\: m/s

\implies \sf Final\: Velocity =\: \dfrac{180}{18}\: m/s

\implies \sf\bold{\green{Final\: Velocity =\: 10\: m/s}}

Given :

  • Final Velocity = 10 m/s
  • Initial Velocity = 0 m/s
  • Time = 10 seconds

According to the question by using the formula we get,

\longrightarrow \sf 10 =\: 0 + a(10)

\longrightarrow \sf 10 =\: 0 + 10a

\longrightarrow \sf 10 - 0 =\: 10a

\longrightarrow \sf 10 =\: 10a

\longrightarrow \sf \dfrac{\cancel{10}}{\cancel{10}} =\: a

\longrightarrow \sf 1 =\: a

\longrightarrow \sf\bold{\red{a =\: 1\: m/s^2}}

\therefore The acceleration in the first case is 1 m/.

\rule{150}{2}

{\normalsize{\bold{\purple{\underline{\bigstar\: In\: second\: case\: :-}}}}}

First, we have to convert initial velocity km/h to m/s :

\implies \sf Initial\: Velocity =\: 36\: km/h

\implies \sf Initial\: Velocity =\: 36 \times \dfrac{5}{18}

\implies \sf Initial\: Velocity =\: \dfrac{180}{18}

\implies \sf\bold{\green{Initial\: Velocity =\: 10\: m/s}}

Given :

  • Initial Velocity = 10 m/s
  • Final Velocity = 0 m/s
  • Time = 20 seconds

According to the question by using the formula we get,

\longrightarrow \sf 0 =\: 10 + a(20)

\longrightarrow \sf 0 =\: 10 + 20a

\longrightarrow \sf 0 - 10 =\: 20a

\longrightarrow \sf - 10 =\: 20a

\longrightarrow \sf \dfrac{- 1\cancel{0}}{2\cancel{0}} =\: a

\longrightarrow \sf \dfrac{- 1}{2} =\: a

\longrightarrow \sf - 0.5 =\: a

\longrightarrow \sf\bold{\red{a =\: -\: 0.5\: m/s^2}}

As we see that the acceleration is - 0.5 m/.

So, it is a retardation.

\therefore The acceleration in second case is 0.5 m/.

[Note : Retardation is a negetive acceleration.

Retardation is a acceleration with a negetive sign. ]


MisterIncredible: Excellent
Similar questions