Physics, asked by vanlalruatiruatruati, 5 hours ago

A scooter moving at a certain initial velocity comes to rest in 62.5 m.If the retardation due to applied brakes was 5m/s².Find the initial velocity of the scooter

Answers

Answered by Anonymous
25

Answer

  • Initial velocity of the scooter = 25m/s.

Given

  • Final velocity = 0 m/s.
  • Distance = 62.5 meters.
  • Acceleration ( retardation ) = -5m/s².

To Find

  • The initial velocity of the scooter.

Step By Step Explanation

Here we need to find the initial velocity of the scooter. So let's do it !!

By using third equation of motion

  • v² - u² = 2as

By substituting the values

\longmapsto\tt {v}^{2}  -  {u}^{2}  = 2as \\  \\  \longmapsto\tt {(0)}^{2}  -  {u}^{2}  = 2 \times  - 5 \times 62.5 \\  \\ \longmapsto\tt  - {u}^{2}  =  - 625 \\  \\\longmapsto\tt  {u}^{2}  = 625 \\  \\\longmapsto\tt u =  \sqrt{625}  \\  \\\longmapsto\bf{\green{ u = 25\:m/s}}

Therefore, initial velocity of the scooter = 25m/s.

________________

➤ Equations of Motion :

There are mainly three equations of motion. They are as follows -

  • v = u + at
  • s = ut + ½at²
  • v² - u² = 2as

Where, u = initial velocity , v = final velocity, t = time, a = acceleration, and s = distance travelled.

_____________________

Answered by Anonymous
75

\underbrace{\underline{\underline{\sf{\maltese\:Given\:Information:-}}}}

\qquad\tt{:\implies\:Final\:velocity\:=\:0\:m/s}

\qquad\tt{:\implies\:Distance\:=\:62.5\:m}

\qquad\tt{:\implies\:Retardation\:=\:-\:5\:m/s^{2}}

\underbrace{\underline{\underline{\sf{\maltese\:To\:Find\:Out:-}}}}

\qquad\tt{:\implies\:Initial\:velocity\:of\:the\:body\:.}

\underbrace{\underline{\underline{\sf{\maltese\:Using\:Formula:-}}}}

\qquad\tt{:\implies\:v^{2}\:-\:u^{2}\:=\:2as}

\underbrace{\underline{\underline{\sf{\maltese\:Required\:Solution:-}}}}

\qquad\bf{:\implies\:v^{2}\:-\:u^{2}\:=\:2as}

\qquad\bf{:\implies\:(\:0\:)^{2}\:-\:u^{2}\:=\:2\:\times\:-5\:\times\:62.5}

\qquad\bf{:\implies\:-\:u^{2}\:=\:-\:625}

\qquad\bf{:\implies\:u^{2}\:=\:625}

\qquad\bf{:\implies\:u\:=\:\sqrt{625}}

\qquad\bf{:\implies\:u\:=\:25\:m/s}

Hence the initial velocity of the scooter is 25m/s.

Similar questions