Physics, asked by satishgarg888, 9 months ago

A Scooter starting from rest moves with a Constant acceleration and covers a distance of 64m in 4 sec. calculate
a) its acceleration & final velocity
b) At what time The scooter had covered half the total distance?​

Answers

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Acceleration=8\:m/s^{2}}}}

\green{\tt{\therefore{Final\:velocity=32\:m/s}}}

\green{\tt{\therefore{Time\:half=2\sqrt{2}\:sec}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Distance(s) = 64 \: m \\  \\ \tt: \implies Time(t) = 4 \: sec \\  \\  \red{\underline \bold{To \:Find :}} \\  \tt:  \implies  Acceleration(a) =?  \\  \\ \tt:  \implies Final \: velocity(v) =?  \\  \\ \tt:  \implies  Time \: taken \: to \: cover \: half \: distance(t_{1}) = ?

• According to given question :

 \tt \circ \: Initial \: velocity = 0 \: m/s \\  \\  \bold{As \: we \: know \: that} \\  \tt: \implies s = ut +  \frac{1}{2} a {t}^{2}  \\  \\ \tt:  \implies  64 = 0 \times 4 +  \frac{1}{2} a \times  {4}^{2}  \\  \\ \tt:  \implies 64 \times 2 = 16a  \\  \\ \tt:  \implies  a =  \frac{128}{16}  \\  \\  \green{\tt:  \implies a = 8 { \: m/s}^{2} } \\  \\  \bold{As \: we \: know \: that} \\ \tt:  \implies  v = u + at \\  \\ \tt:  \implies v = 0 + 8 \times 4 \\  \\  \green{\tt:  \implies  v = 32 \: m/s} \\  \\  \tt \circ \: Distance = 32 \: m \\  \\  \bold{As \: we \: know \: that} \\ \tt:  \implies  s_{1}  = u t_{1}+  \frac{1}{2} a { t_{1}}^{2}  \\  \\ \tt:  \implies 32 = 0 \times  t_{1} +  \frac{1}{2}  \times 8 \times  { t_{1} }^{2}  \\  \\ \tt:  \implies   \frac{32 \times 2}{8}  = { t_{1} }^{2}  \\  \\ \tt:  \implies   t_{1} =  \sqrt{8}  \\  \\   \green{\tt:  \implies  t_{1} = 2 \sqrt{2}  \: sec}

Answered by PoisionBabe
0

Explanation:

Acceleration = 8m/s^2.

Final Velocity= 32m/s.

Therefore, Time= 22 sec.

Similar questions