Chemistry, asked by gulshaara1002, 5 months ago

A sealed tube which can withstand
a pressure of 3 atm is filled with air
at 27°C 1 atm pressure. Find the
temperature above which it will burst​

Answers

Answered by Anonymous
11

Answer:

The \: temperature \: with \: which  \\ \: the \: tube \: will \: burst  \:  \: be \: =  >   \\ \: 900 \: K \: (or \: 627 \: °C= 900 - 273)

Explanation:

 Let \: the \: volume \: of \: air \: in \: tube \: be  \\ \: V \: \:  cm {}^{3}  \\ that \: is, \\ Initial  \: volume \:  \: V  _{1}  \:  = V \:  \: cm {}^{3}  \\ Final \: volume \:  \: V _{2} \:  = V \:  \: cm {}^{3} \\ Initial \: pressure  \: \: P _{1} = 1 \: atm \\ Final \: pressure \:  \: P  _{2} \:  = 3 \: atm \\

 Initial \: temperature \:  \:  \\ T_{1}   = 273 + 27 = 300 \: K \\ Final \: temperature \:  \: T _{2} \:  =   \: ?

 According \: to \: the \: gas \: equation \\  \frac{P _{1}V_{1}}{T _{1}}  =  \frac{P _{2}V _{2} }{T  _{2} }  \\  =  >  \frac{1 \: atm \times V \: cm {}^{3} }{300 \: K}  =  \frac{3 \: atm \times V \: cm {}^{3} }{T  _{2}  }  \\ Therefore \:  \: T _{2} =  \frac{300 \: K \times 3 \: atm \times  V \:   cm {}^{3} }{1 \: atm \times V \: cm {}^{3} }  \\ T _{2} = 300 \: K \times 3 \\ Final \: temperature =  > 900 \: K

Similar questions