Math, asked by vinayrockxkumar, 8 months ago



A Second onder contraining a
relay with dead line and hysteresis
shown below in figure obtain
the phase trajectory of
system for the
initial conditions
eco=.65, e(0)2 O. Does the
Sto system have a limit cycle? is
determine its amplitude and
period.
so​

Answers

Answered by nirmalakarki1981
0

Answer:

\sf\large\underline\purple{Question:-}

Question:−

\sf{\implies 25^{n-1}+100=5^{2n-1}}⟹25

n−1

+100=5

2n−1

\sf\large\underline\purple{To\: Find:-}

ToFind:−

\sf{\implies The\: value\:of\:(n)=?}⟹Thevalueof(n)=?

\sf\large\underline\purple{Solution:-}

Solution:−

To calculate the value of (n) at first we have splitting the terms the simplify the given expression:-]

\tt{\implies 5^{2n-2}+100=5^{2n-1}}⟹5

2n−2

+100=5

2n−1

\tt{\implies 5^{2n-1}-5^{2n-2}=100}⟹5

2n−1

−5

2n−2

=100

\tt{\implies 5^{2n}*5^{-1}-5^{2n}*5^{2n}*5^{-2}=100}⟹5

2n

∗5

−1

−5

2n

∗5

2n

∗5

−2

=100

\tt{\implies 5^{2n}(5^{-1}-5^{-2})=100}⟹5

2n

(5

−1

−5

−2

)=100

\tt{\implies 5^{2n}\bigg(\dfrac{1}{5}-\dfrac{1}{25}\bigg)=100}⟹5

2n

(

5

1

25

1

)=100

\tt{\implies 5^{2n}\bigg(\dfrac{5-1}{25}\bigg)=100}⟹5

2n

(

25

5−1

)=100

\tt{\implies 5^{2n}*\dfrac{4}{25}=100}⟹5

2n

25

4

=100

\tt{\implies 5^{2n}=25*25}⟹5

2n

=25∗25

\tt{\implies 5^{2n}=5^2*5^2}⟹5

2n

=5

2

∗5

2

\tt{\implies 5^{2n}=5^4}⟹5

2n

=5

4

\tt{\implies 2n=4\implies n=2}⟹2n=4⟹n=2

\sf\large{Hence,}Hence,

\sf{\implies The\: value\:of\:(n)=2}⟹Thevalueof(n)=2

\sf\large\underline\purple{Question:-}

Question:−

\tt{\implies \dfrac{(16*2^{n+1}-4*2^{n})}{(16*2^{2n+2}-2*2^{n+2})}

\sf\large\underline\purple{To\: Find:-}

ToFind:−

\sf{\implies To\: simplify\:the\: given\: expression:-}⟹Tosimplifythegivenexpression:−

\sf\large\underline\purple{Solution:-}

Solution:−

To calculate simplification, at first we have splitting the terms the simplify the given expression:-]

\tt{\implies \dfrac{16*2^{n}*2^{1}-4*2^{n}}{16*2^{2n}*2^{2}-2*2^{n}*2^{2}}

\tt{\implies \dfrac{2^{n}(16*2^{1}-4)}{2^n(16*2^{2}-2*2^{2}}

\tt{\implies \dfrac{16*2-4}{16*4-2*4}}⟹

16∗4−2∗4

16∗2−4

\tt{\implies \dfrac{32-4}{64-8}}⟹

64−8

32−4

\tt{\implies \dfrac{28}{56}=\dfrac{1}{2}}⟹

56

28

=

2

1

Similar questions