Math, asked by hdthebest95, 9 months ago

A sector of angle 80° is cut-out from a circle. If the arc length is 26.4 cm. Find the area of
the sector.

Answers

Answered by Anonymous
1

Given that ,

Angle of sector = 80°

Length of arc of sector = 26.4 cm

We know that , the length of arc of sector is given by

   \sf\large\fbox{Length  \: of  \: arc  =  \frac{ \theta}{360}  \times 2\pi r}

Thus ,

 \sf \mapsto26.4 =  \frac{80 \times 2 \times 22 \times r}{360 \times 7}  \\  \\ \sf \mapsto26 .6 =  \frac{8 \times 11 \times r}{9 \times 7}  \\  \\ \sf \mapsto26.4 =  \frac{88 \times r}{9 \times 7}  \\  \\ \sf \mapsto1663.2 = 88 \times r \\  \\ \sf \mapsto =  \frac{1663.2}{88}  \\  \\ \sf \mapsto r = 18.9 \:  \: m

 \sf \therefore \underline{The \:  radius  \: of \:  circle \:  is  \: 18.9  \: c m}

Now , the area of sector is given by

  \sf \large\fbox{Area =  \frac{ \theta}{360}  \times \pi {r}^{2} }

Thus ,

 \sf \mapsto Area =   \frac{80 \times 22 \times  {(18.9)}^{2} }{360 \times 7}   \\  \\\sf \mapsto  Area =  \frac{4 \times 11 \times 27 \times 21}{ {(10)}^{2} }  \\  \\\sf \mapsto  Area = 24948 \times  {(10)}^{ - 2}  \\  \\\sf \mapsto  Area = 249.48 \:  \:  {cm}^{2}

  \therefore\sf \underline{The \:  area  \: of  \: sector \:  is \:  249.48 \:  {cm}^{2} }

Similar questions