Math, asked by harshit244, 1 year ago

a sector of circle of radius 15 cm has an angle of 120degree. it is rolled up so that two bounding radii are joined together to form a cone. find the volume of the cone

Answers

Answered by siddhartharao77
54
Given Radius of the circle = Slant height of the cone = 15cm.

Given Angle theta = 120.

We know that Length of the arc = theta/360 * 2pir

                                                      = 120/360 * 2pi * 15

                                                      =  2pi * 5

                                                      = 10pi.


Therefore the circumference = 10pi.

We know that Circumference of the base of cone = 2pir.

2pir = 10pi

2r = 10

r = 5cm.


We know that height of the cone h^2 = l^2 - r^2

                                                               = 15^2 - 5^2

                                                               = 225 - 25

                                                               = 200

                                                        h = 10 \sqrt{2} cm


Now,


Volume of the cone = 1/3pir^2h
 
                                   = \frac{1}{3} *  \frac{22}{7} * (5)^2 * 10 \sqrt{2}

                                  =  \frac{22 * 25 * 10 * 1.414}{3 * 7}

                                 = \frac{7777}{21}

                                 = 370.33cm^3.



Hope this helps!

siddhartharao77: :-)
Answered by tiwaribhumisha
5

Answer:

hope it helps

Step-by-step explanation:

370.33 is the correct answer

Similar questions