Math, asked by love8318, 1 year ago

A Sector Of Radius 4.2 Has An Area 9.24 Cm2 .Find Its Perimeter.

Answers

Answered by aquialaska
13

Answer:

Perimeter is 12.8 cm.

Step-by-step explanation:

Given:

Area of the Sector = 9.24 cm²

Radius of the circle, r = 4.2 cm

To find: Perimeter of the sector.

let \theta be the angle of subtended at center of the sector.

We know that,

Area=\frac{\theta}{360}\times\pi r^2

9.24=\frac{\theta}{360}\times\frac{22}{7}(4.2)^2

9.24\times360=\theta\times22(0.6)(4.2)

3326.4=\theta\times55.4

\theta=\frac{3326.4}{55.44}

\theta=60^{\circ}

Length of the arc = \frac{\theta}{360}\times2\pi r

                             =\frac{60}{360}\times2(\frac{22}{7})(4.2)

                             =\frac{1}{6}\times2(22)(0.6)

                             =44(0.1)

                             =4.4

Perimeter of the Sector = Length of the arc + 2 × Radius

                                       = 4.4 + 2 × 4.2

                                       = 4.4 + 8.4

                                       = 12.8 cm

Therefore, Perimeter is 12.8 cm.

Answered by roshanpriya521
0

Answer:

answer is:

perimeter: 12.8

Similar questions