Physics, asked by Ramankhurana, 1 year ago

A seies LCR circuit with R= 25 ohm L =16H and C=25 is connected to. A variable frequency 225V. claculate angular frequency impedance and their resonance

Answers

Answered by Anonymous
4

\huge\underline\blue{\sf Answer:}

\large\red{\boxed{\sf \omega=50rad/s}}

\red{\boxed{\sf Impedance\:at\: Resonance (Z)=25 ohm}}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

  • R = 25 ohm

  • L = 16 H

  • C = 25 \sf{\mu} F

━━━━━━━━━━━━━━━━━━━━━━━━━

a) Angular Frequency :

\large\underline\pink{\sf To\:Find: }

  • Angular Frequency (\omega) =?

\large{♡}\large{\boxed{\sf \omega={\frac{1}{\sqrt{LC}}}}}

\large\implies{\sf {\frac{1}{\sqrt{16×25×{10}^{-6}}}}}

\large\implies{\sf {\frac{1}{\sqrt{400}}}}

\large\implies{\sf {\frac{1}{20×{10}^{-3}}}}

\huge\red{♡}\large\red{\boxed{\sf \omega=50rad/s}}

________________________________________

b) Impedance at resonance

\large\underline\pink{\sf To\:Find: }

  • Impedance at resonance (Z) = ?

\large{♡}\large{\boxed{\sf Z={\sqrt{{R}^{2}+{(\omega L -{\frac{1}{\omega C}})}^{2}}}}}

At resonance ,

\large{\sf \omega L={\frac{1}{\omega C}}}

Therefore ,

\large{\boxed{\sf Z=\sqrt{{R}^{2}}}}

\large\implies{\sf Z=R}

And R value is 25 ohm (given)

Therefore ,

\huge\red{♡}\red{\boxed{\sf Impedance\:at\: Resonance (Z)=25ohm}}

Similar questions