CBSE BOARD X, asked by GouravPatel, 1 year ago

A semi circular region and a square region have equal perimeter. The area of the square region exceed that of the semicircullar region by 4 sq. cm. Find the perimeter and area of two region

Answers

Answered by vaishu775
22

\sf\large\underline{Given:-}

\sf{\implies Area\:_{(square)}=Area\:_{(semicircle)}+4}

\sf{\implies Perimeter\:_{(square)}=Perimeter\:_{semicircle)}}

\sf\large\underline{To\: Find:-}

\sf{\implies Perimeter\:_{(square\:and\: semicircle)}=?}

\sf{\implies Area\:_{(square\:and\: semicircle)}=?}

\sf\large\underline{Solution:-}

To calculate the perimeter and area of two regions ,at first we have to assume the radius of semicircle be r and the side of square be a then setting up equation as per the given condition in the question then solve the value of a and r after that calculate it's perimeter and area. By applying formula to set up equation here:-

\sf{\implies Perimeter\:_{(square)}=Perimeter\:_{semicircle)}}

\tt{\implies 4×side=r(\pi+2)}

\tt{\implies 4a=r(\dfrac{22}{7})+2}

\tt{\implies 4a=r(\dfrac{22+14}{7})}

\tt{\implies 4a=\dfrac{36r}{7}}

\tt{\implies 28a=36r}

  • Dividing by 4 on both sides here:

\tt{\implies 7a=9r}

\tt{\implies a=\dfrac{9r}{7}------(i)}

\sf{\implies Area\:_{(square)}=Area\:_{(semicircle)}+4}

\tt{\implies a^2=\dfrac{\pi\:r^2}{2}+4}

Putting the value of a here:

\tt{\implies \bigg(\dfrac{9r}{7}\bigg)^{2}=\dfrac{\pi\:r^2+8}{2}}

\tt{\implies \dfrac{81r^2}{49}=\dfrac{\dfrac{22r^2}{7}+8}{2}}

\tt{\implies \dfrac{81r^2}{49}=\dfrac{\dfrac{22r^2+56}{7}}{2}}

\tt{\implies \dfrac{81r^2}{49}=\dfrac{22r^2+56}{14}}

\tt{\implies 81r^2×14=49(22r^2+56)}

\tt{\implies 1134r^2=1078r^2+2744}

\tt{\implies 1134r^2-1078r^2=2744}

\tt{\implies 56r^2=2744}

\tt{\implies r^2=49}

\tt{\implies r=\sqrt{49}=7cm}

Now putting the value of r=7 in eq (i):

\tt{\implies a=\dfrac{9r}{7}}

\tt{\implies a=\dfrac{9×7}{7}}

\tt{\implies a=9cm}

Now calculate area and perimeter here:

\sf{\implies Area\:_{(square)}=a^2}

\sf{\implies Area\:_{(square)}=9^2}

\sf{\implies Area\:_{(square)}=81cm^2}

\sf{\implies Perimeter\:_{(square)}=4a}

\sf{\implies Perimeter\:_{(square)}=4×9}

\sf{\implies Perimeter\:_{(square)}=36cm}

\sf{\implies Area\:_{(semicircle)}=\dfrac{22/7×7^2}{2}}

\sf{\implies Area\:_{(semicircle)}=\dfrac{22×7}{2}}

\sf{\implies Area\:_{(semicircle)}=77cm^2}

\sf{\implies Perimeter\:_{(semicircle)}=r(\pi+2)}

\sf{\implies Perimeter\:_{(semicircle)}=7(22/7+2)}

\sf{\implies Perimeter\:_{(semicircle)}=7(22+14/2)}

\sf{\implies Perimeter\:_{(semicircle)}=7×36/2}

\sf{\implies Perimeter\:_{(semicircle)}=126cm}

Similar questions