A semicircle is described on 'XY' as diameter and points A,B,C and D are chosen on arc 'XY' and quadrilateral ABCD is drawn.Then maximise tanA+tanB+tanC+tanD.
msnitish:
I want procedure completely .
Answers
Answered by
0
the triangles DAC and DBC are right angled triangle
so C+D=90 =90-D
for a quadrilateral
A+B+C+D=360
A+B=270
tan A + tan B + tan C + tan D=tan A + tan (270-A) + tan (90-D) + tan D
=tan A + cot A + cot D + tan D
so C+D=90 =90-D
for a quadrilateral
A+B+C+D=360
A+B=270
tan A + tan B + tan C + tan D=tan A + tan (270-A) + tan (90-D) + tan D
=tan A + cot A + cot D + tan D
Answered by
0
The triangles DAC and DBC
are right angled triangle
so C+D=90 =>C=90-D
for a quadrilateral
A+B+C+D=360 =>A+B+90=360=>A+B=360-90
A+B=270
tan A + tan B + tan C + tan D=tan A + tan (270-A) + tan (90-D) + tan D
=tan A + cot A + cot D + tan D
so C+D=90 =>C=90-D
for a quadrilateral
A+B+C+D=360 =>A+B+90=360=>A+B=360-90
A+B=270
tan A + tan B + tan C + tan D=tan A + tan (270-A) + tan (90-D) + tan D
=tan A + cot A + cot D + tan D
Similar questions
Math,
8 months ago
Science,
8 months ago
Math,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago