Math, asked by deepanshukumar8a, 9 hours ago

A semicircle sheet of paper of diameter 14cm is bent to form a conical cup. Find the capacity of the cup.​

Answers

Answered by JubayerMoontasir
2

 \red{Required \:  Solution - }

Let  \: radius  \: and  \: height \:  of  \: the  \: conical \:  cup  \: be  \: 'r'  \: and  \: 'h'  \: respectively.

Circumference  \: of  \: the \:  base \:  of  \: the  \: cone = Length \:  of \:  arc  \: of  \: the \:  semi-circle

2\pi r = ( \frac{1}{2} )2\pi R

2r = R

2r = 7

r =  \frac{7}{2}

Slant  \: height \:  of  \: the  \: conical  \: cup = Radius  \: of \:  the  \: semi-circular \:  sheet

 \blue{We \:  know  \: that,}

 {l}^{2}  =  {h}^{2}  +  {r}^{2}

( {7})^{2}  =  {h}^{2}  + (\frac{7}{2})^{2}

49 =  {h}^{2}  +  \frac{49}{4}

 {h}^{2}  = 49 -  \frac{49}{4}

 {h}^{2}  =  \frac{196 - 49}{4}

 {h}^{2}  =  \frac{147}{4}

 {h}^{2}  =  \sqrt{ \frac{147}{4} }

h = 6.06

Height  \: of \:  the  \: conical \:  cup = 6.06 cm.

 \green{The \:  capacity \:  of  \: the  \: conical  \: cup  \: is  \: given  \: by,}

V =  \frac{1}{3} \pi {r}^{2} h

V =  \frac{1}{3}  \times  \frac{22}{7}  \times ( \frac{7}{2} ) ^{2}  \times 6.06

V =  \frac{1}{3}  \times  \frac{22}{7}  \times  \frac{49}{4}  \times 6.06

V = 77.77 {cm}^{3}

 \pink{Therefore,}

The \:  capacity  \: of  \: the  \: cup \:  is   \: {77.77}^{3}

Similar questions