Math, asked by anujy3876, 2 months ago

A Semicircular region and a square region have equal perimeters. The area of the sq
!
region oxeeds that of the semicircular region by 4cm. Find the perimeters and
the two region​

Answers

Answered by vaishu775
16

Question :-

  • A semicircular region and a square region have a equal perimeters. The area of square region exceeds that of the semicircular region by 4cm². Find the perimeter and area of the two region.

Given :

  • Perimeter of square = Perimeter of semicircle
  • Area of square = Area of semicircle + 4cm²

To Find :

  • Perimeter of square and semicircle
  • Area of square and semicircle

Solution :

  • Let the radius of semicircle be 'r'

And The side of the square be 'a'

Now, According to the question by using formula we get,

Perimeter of square = Perimeter of semicircle

\sf{\pmb{\red{4 × side = r(π + 2)}}}

By Substituting values we get,

\implies{\sf{4a = r\bigg( \dfrac{22}{7} \bigg) + 2}}

\implies{\sf{4a = r\bigg( \dfrac{22 + 14}{7}\bigg )}}

\implies{\sf{ 4a = \dfrac{36r}{7} }}

\implies{\sf{7 \times 4a = 36r}}

\implies{\sf{28a = 36r}}

By Dividing 4 both sides we get,

\implies{\sf{7a = 9r}}

\implies{\sf{a = \dfrac{9r}{7} }}

Now,

Area of the square = Area of the semicircle + 4cm²

\sf{\pmb{\red{ {(a)}^{2} = \dfrac{\pi {r}^{2} }{2} }}}

By putting a value we get,

\implies{\sf{ {\bigg(\dfrac{9r}{7} }\bigg)^{2} = \dfrac{\pi {r}^{2}}{2} +4}}

\implies{\sf{ {\bigg(\dfrac{9r}{7} }\bigg)^{2} = \dfrac{\pi {r}^{2} + 8}{2} }}

\implies{\sf{ \dfrac{81 {r}^{2} }{49} = \dfrac{ \dfrac{22 {r}^{2}}{7} + 8}{2} }}

\implies{\sf{ \dfrac{81 {r}^{2} }{49} = \dfrac{ \dfrac{22 {r}^{2} +56}{7} }{2} }}

\implies{\sf{ \dfrac{81 {r}^{2} }{49} = { \dfrac{22 {r}^{2} +56}{7} } \times \dfrac{1}{2} }}

\implies{\sf{ \dfrac{81 {r}^{2} }{49} = { \dfrac{22 {r}^{2} +56}{14} }}}

\implies{\sf{81 {r}^{2} \times 14 = 49( {22r}^{2} + 56) }}

\implies{\sf{1134 {r}^{2} = 1078 {r}^{2} + 2744}}

\implies{\sf{1134 {r}^{2} - 1078 {r}^{2} = 2744 }}

\implies{\sf{56 {r}^{2} = 2744 }}

\implies{\sf{ {r}^{2} = \cancel \dfrac{2744}{56} }}

\implies{\sf{\purple{ r = 7cm}}}

Now, By putting r value in eq- (1),

\implies{\sf{a = \dfrac{9r}{7}}}

\implies{\sf{a = \dfrac{9×7}{7}}}

\implies{\sf{a = \dfrac{82}{7}}}

\implies{\sf{\purple{a = 9cm}}}

Now, we can find area and Perimeter :

Area of Square = (a)²

\implies{\sf{(9)²}}

\implies{\boxed{\sf{81cm²}}}

Perimeter of Square = 4a or 4 × side

\implies{\sf{4×9}}

\implies{\boxed{\sf{36cm}}}

Area of semicircle ={\bf{\dfrac{πr²}{2}}}

\implies{\sf{\dfrac{\dfrac{22}{7}×7²}{2}}}

\implies{\sf{\dfrac{\dfrac{22}{7}×49}{2}}}

\implies{\sf{\dfrac{22×7}{2}}}

\implies{\sf{\dfrac{154}{2}}}

\implies{\boxed{\sf{77cm²}}}

Perimeter of semicircle = r(π + 2)

\implies{\sf{r\bigg(\dfrac{22}{7}+2\bigg)}}

\implies{\sf{7\bigg(22+\dfrac{14}{2}\bigg)}}

\implies{\sf{7×\dfrac{36}{2}}}

\implies{\sf{\dfrac{252}{2}}}

\implies{\boxed{\sf{126cm}}}

Similar questions