Math, asked by shreyamishra840, 1 year ago

A semicircular sheet of metal of diameter 28 cm bent into an open conical cup.Find the depth and capacity of the cup .

Answers

Answered by 01Ashu111
3
Heya,

Solution to your question is:-

Let r cm and R cm be the radius of the semi-circular sheet and base of the conical cup respectively.

Suppose the depth of the conical cup is H cm.

Given, 2r = 28 cm

⇒ r = 14 cm

When the semi-circular sheet of metal is bent into an open conical cup, then 

Slant height of the cone, L = Radius of the semi-circular sheet = 14 cm

Circumference of base of cone = 2πR

∴ 2π R  = 14π cm

⇒ 2R = 14 cm

⇒ R = 7 cm

Slant height of the cone, L = 14 cm

√(7 cm²+ H²= 14cm {Since, L=√R²+H²}

⇒ 49 cm²+ H ²= (14 cm)²= 196 cm²

⇒ H ²= 196 cm² – 49 cm² = 147 cm²

⇒ H²=√147cm²=7√3cm

Therefore,
Capacity or volume of the conical cup
= 1/3πR²H
= 1/3×22/7×(7)²×7√3
= 【1078√3/3cm³】 ANSWER...

HOPE THIS HELPS YOU:-))
@Ashu
Answered by kamaleshn2006
0

Answer:

1078 root 3/3

Step-by-step explanation:

dont get angry always be happy

Similar questions