Math, asked by gita595pratyusha, 1 year ago

A set of 5 coins is tossed 3200 times and the number of heads appearing each time is noted. The results are given below: No. of Heads 0 1 2 3 4 5
Frequency 80 570 1100 900 500 50

Test the hypothesis that the coins are unbiased

Answers

Answered by amitnrw
22

Answer:

the hypothesis that the coins are unbiased is rejected

Step-by-step explanation:

Let say coins are unbiased

then probability of head = Probability of Tail = 1/2

Chances of no head = ⁵C₀(1/2)⁰(1/2)⁵ = 1/32    => (1/32)*3200 = 100

Chances of 1 Head = ⁵C₁(1/2)¹(1/2)⁴  = 5/32 =>  (5/32)*3200 = 500

Chances of 2 Head = ⁵C₂(1/2)²(1/2)³ = 10/32 =>  (5/32)*3200 = 1000

Chances of 3 Head = ⁵C₃(1/2)³(1/2)² = 10/32 =>  (5/32)*3200 = 1000

Chances of 4 Head = ⁵C₄(1/2)⁴(1/2)¹  = 5/32 =>  (5/32)*3200 = 500

Chances of 5 head = ⁵C₅(1/2)⁵(1/2)⁰ = 1/32    => (1/32)*3200 = 100

Occurance      Event Probability      ( O-E)²       (O-E)²/E

80                    100                             400          4        

570                  500                            4900         9.8        

1100                 1000                          10000         10        

900                 1000                           10000         10

500                  500                            0                0        

50                   100                             2500         25        

Sum of   (O-E)²/E = 58.8

Value is higher than the expected

Null hypothesis is rejected

Answered by 8332966169p
0

Answer:

Step-by-step explanation:

Similar questions