Physics, asked by shankarbhuikar679, 11 months ago

A shell is fired from a canon with a velocity of 200m/s at an angle of 30°above the horizontal. find its
1) maximum hight.
2) time to flight by the shell.​

Answers

Answered by nirman95
69

Answer:

Given:

Velocity = 200 m/s

Angle.of projectile = 30°

To find :

Max height and time taken

Formulas used:

Max height = u²sin²(@)/2g

Time = 2u sin(@)/g,

where @ is the angle of the projectile, u is the initial velocity, g is gravity .

Calculation:

Max height = 200² sin²(30°)/20

=> Max height = 40000/(40 ×2)

=> Max height = 0.5 km.

Time = 2 × 200 × sin(30°)/10

=> time = 20 seconds.

Answered by Sharad001
182

Question :-

→ Given above ↑

Answer :-

(1) Maximum height= 500 m or 0.5 km

(2) Time of flight = 20 seconds

To Find :-

(1) Maximum height

(2) time of flight

Formula used :-

 \rightarrow \boxed{  \sf{h_{max.} =  \frac{ {u}^{2} \sin \:  \theta }{2g}} } \\  \\  \rightarrow  \boxed{\sf{time \: of \: flight =  \frac{2u \:  \sin \:  \theta}{g} }}

Solution :-

Given that ,

 \star  \:  \: \sf{ velocity \: (u) = 200 \:  \frac{m}{s} } \\  \\  \star \:  \:  \sf{angle \: ( \theta) = 30 \degree}

Therefore ,

_________________________________

(1) For maximum height ,

 \rightarrow \sf{ h_{max.} \:  =  \frac{200 \times 200  \:   { \sin}^{2} \:30 \degree}{2 \times 10} } \:   \because \: g = 10 \:  \frac{m}{ {s}^{2} }  \\  \\  \rightarrow \sf{h_{max.} \:  =  \frac{200 \times 200}{20  \times 4} } \:  \\  \\  \rightarrow \sf{ h_{max.} \:  =  \frac{2000}{4} } \\  \\  \rightarrow \boxed{ \sf{ h_{max.} \:  = 500 \: m}}

Maximum height is 500 m.

__________________________________

(2) For time of flight

 \rightarrow \sf{t \:  =  \frac{2 \times 200 \: \sin \:  30 \degree}{10} } \\  \\  \rightarrow \sf{ t \:  = 40 \times  \frac{1}{2} } \\  \\  \rightarrow  \boxed{\sf{t \:  = 20 \: seconds}}

Hence time of flight is 20 seconds .

__________________________________

Similar questions