Math, asked by vatul1910, 1 month ago

a shere and a cube have same surface are . find the ratio of volume of sphere to that of cube​

Answers

Answered by VaibhavC4
0

Answer:

Volume of sphere : Volume of cube = √6 : √π.

Step-by-step explanation:

Let r and a be the radius of the sphere and edge of the cube respectively.

Given, Surface area of sphere = Surface area of cube

4πr^2 = 6a^2

(r/a)^2 = 3 / 2π

r / a = √(3/2π)

Volume of sphere / Volume of cube = (4/3)πr^3 / a^3 = (4π/3)(r/a)^3

= (4π/3)(√(3/2π))^3

= (4π/3)(3/2π)(√(3/2π))

= 2√(3/2π)

= √(4x3/2π)

= √(6/π)

Thus, Volume of sphere : Volume of cube = √6 : √π.

Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{TSA_{(sphere)} = TSA_{(cube)} }  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \:To\:find - \begin{cases} &\sf{Volume_{(sphere)} : Volume_{(cube)} }  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

1. \:  \:  \:  \boxed{ \sf{ \: TSA_{(sphere)} = 4\pi \:  {r}^{2} }}

2. \:  \:  \:  \boxed{ \sf{ \: TSA_{(cube)}  = 6 {(edge)}^{2} }}

 3. \:  \:  \: \boxed{ \sf{ \: Volume_{(sphere)} = \dfrac{4}{3} \pi \:  {r}^{3} }}

4. \:  \:  \:  \boxed{ \sf{ \: Volume_{(cube)}  =  {(edge)}^{3} }}

\large\underline{\sf{Solution-}}

\begin{gathered}\begin{gathered}\bf \:Let - \begin{cases} &\sf{radius \: of \: sphere =  \: r} \\ &\sf{edge \: of \: cube \:  =  \: a} \end{cases}\end{gathered}\end{gathered}

According to statement,

\rm :\longmapsto\:TSA_{(sphere)} = TSA_{(cube)}

\rm :\longmapsto\:4\pi \:  {r}^{2}  = 6 {a}^{2}

\rm :\longmapsto\: {a}^{2}  = \dfrac{2}{3} \pi \:  {r}^{2}

\bf\implies \:a = \dfrac{ \sqrt{2} }{ \sqrt{3}}  \times  \sqrt{\pi}  \times r -  - (1)

Now,

\rm :\longmapsto\:Volume_{(sphere)} : Volume_{(cube)}

\rm :\longmapsto\: =  \: \dfrac{4}{3} \pi \:  {r}^{3}  :  {a}^{3}

\rm :\longmapsto\: =  \: \dfrac{4}{3} \pi \:  {r}^{3}  :   {\bigg(\dfrac{ \sqrt{2} }{ \sqrt{3} } \times  \sqrt{\pi} \times r   \bigg) }^{3}

\rm :\longmapsto\: =  \: \dfrac{4}{\cancel 3} \cancel \pi \:   \cancel{{r}^{3}}  :  \dfrac{2 \sqrt{2} }{\cancel 3 \sqrt{3} }  \times\cancel  \pi \:  \sqrt{\pi}  \times \cancel { {r}^{3}}

\rm :\longmapsto\: =  \: \cancel 2\times\cancel {\sqrt{2}} \times  \sqrt{2} \times  \sqrt{3}  \:  \: :  \:  \: \cancel 2 \times  \cancel {\sqrt{2}} \times  \sqrt{\pi}

\rm :\longmapsto\: =  \:  \sqrt{6}  \:  :  \:   \sqrt{\pi}

\rm :\implies\:Volume_{(sphere)} : Volume_{(cube)}  =  \sqrt{6}  :  \sqrt{\pi}

Additional Information :-

\boxed{ \sf{ \: Volume_{(cone)} = \dfrac{1}{3} \pi \: {r}^{2} h}}

\boxed{ \sf{ \: Volume_{(cube)} = {(edge)}^{3} }}

\boxed{ \sf{ \: Volume_{(cuboid)} = lbh}}

\boxed{ \sf{ \: CSA{(cylinder)} = 2\pi \: rh}}

\boxed{ \sf{ \: CSA{(cube)} = 4 \times {(edge)}^{2} }}

\boxed{ \sf{ \: CSA{(cuboid)} = 2(l + b) \times h}}

\boxed{ \sf{ \: TSA{(cylinder)} = 2\pi \: r(h + r)}}

\boxed{ \sf{ \: TSA{(cone)} = \pi \: r(l + r)}}

\boxed{ \sf{ \: TSA{(cone)} = {6(edge)}^{2} }}

Similar questions