Math, asked by arush5111, 8 months ago

A ship is fitted with three engines A, B and C. These three engines function independently of each other
with probabilities /2 , 74, 74 respectively. For ship to be operational at least two of its engines must
function. Let E denote the event that the ship is operational and E1 E2 and E3 denote the events that
engines A,B and C are functioning. Then validate the following.
(a). PE /E) = 3/16
(b) P(E/E2) = 5/16
(c) P( Exactly two engines of the ship are functioning / E) = 7/8.​

Answers

Answered by Anonymous
10

P(X  

1

​  

)=  

2

1

​  

,P(X  

2

​  

)=  

4

1

​  

,P(X  

3

​  

)=  

4

1

​  

 

P(X)=P(X  

1

​  

∩X  

2

​  

∩X  

3

c

​  

)+P(X  

1

​  

∩X  

2

c

​  

∩X  

3

​  

)+P(X  

1

c

​  

∩X  

2

​  

∩X  

3

​  

)+P(X  

1

​  

∩X  

2

​  

∩X  

3

​  

)=  

4

1

​  

 

(A) P(X  

1

c

​  

/X)=  

P(X)

P(X∩X  

1

c

​  

)

​  

=  

4

1

​  

 

2

1

​  

×  

4

1

​  

×  

4

1

​  

 

​  

 

=  

8

1

​  

 

P(  

X

exactly 2 engines

​  

)=  

4

1

​  

 

(  

2

1

​  

×  

4

1

​  

×  

4

1

​  

)+(  

2

1

​  

×  

4

1

​  

×  

4

3

​  

)+(  

2

1

​  

×  

4

3

​  

×  

4

1

​  

)

​  

 

=  

8

7

​  

 

P(  

X  

2

​  

 

X

​  

)=  

P(X  

2

​  

)

P(X∩X  

2

​  

)

​  

=  

4

1

​  

 

(  

2

1

​  

×  

4

1

​  

×  

4

1

​  

)+(  

2

1

​  

×  

4

1

​  

×  

4

3

​  

)+(  

2

1

​  

×  

2

1

​  

×  

4

1

​  

)

​  

 

=  

4

1

​  

 

32

5

​  

 

​  

 

=  

8

5

​  

 

P(  

X  

1

​  

 

X

​  

)=  

P(X  

1

​  

)

P(X∩X  

1

​  

 

​  

=  

2

1

​  

 

32

7

​  

 

​  

 

=  

16

7

Answered by sidwarrior123
1

Answer:

PE /E) = 3/16

(b) P(E/E2) = 5/16

(c) P( Exactly two engines of the ship are f

Step-by-step explanation:

SOLUTION

BRAINLIEST BUDDY

Similar questions