Physics, asked by reiogami240, 6 months ago

A ship is moving at 40 km.h-1 towards west. Another
is proceeding southward at 30 km-h-1 . Find the rela-
tive velocity of the second ship with respect to the first.
[150 km.h-1, inclined towards east making an angle
tan-1 with the south]​

Attachments:

Answers

Answered by Ekaro
11

Given :

Velocity of ship B = 40km/h (West)

Velocity of ship A = 30km/h (South)

To Find :

Relative velocity of ship B wrt ship A.

Solution :

■ Relative velocity of object B wrt A is given by

  • \boxed{\tt{\orange{\overrightarrow{V_{BA}}=\overrightarrow{V_B}-\overrightarrow{V_A}}}}

:\implies\sf\:\overrightarrow{V_A}=40\:(\hat{-j})

:\implies\sf\:\overrightarrow{V_B}=30\:(\hat{-i})

Calculation of relative velocity :

:\implies\tt\:\overrightarrow{V_{BA}}=\overrightarrow{V_B}-\overrightarrow{V_A}

:\implies\tt\:\overrightarrow{V_{BA}}=\overrightarrow{V_B}+(-\overrightarrow{V_A})

\dag\tt\:\:-\overrightarrow{V_A}=40\:\hat{i}

:\implies\sf\:\overrightarrow{V_{BA}}=\sqrt{30^2+40^2}\:(\hat{-j}+\hat{i})

:\implies\sf\:\overrightarrow{V_{BA}}=\sqrt{900+1600}\:(\hat{-j}+\hat{i})

:\implies\sf\:\overrightarrow{V_{BA}}=\sqrt{2500}\:(\hat{-j}+\hat{i})

:\implies\bf\:\overrightarrow{V_{BA}}=50\:(\hat{-j}+\hat{i})

Magnitude : \underline{\boxed{\bf{\purple{|\overrightarrow{V_{BA}}|=50\:ms^{-1}}}}}

Direction :

:\implies\sf\:tan\theta=\dfrac{V_A}{V_B}

:\implies\sf\:tan\theta=\dfrac{40}{30}

:\implies\:\underline{\boxed{\bf{\pink{\theta=tan^{-1}\big(\dfrac{4}{3}\big)\:towards\:SE}}}}

Attachments:
Answered by kumarghoshabhijit
1

Answer:

HERE IS YOUR ANSWER

DO IT IN YOUR EXAMS

EXPERT ANSWER

LIKE AND FOLLOW ME

Attachments:
Similar questions