Math, asked by gshubhodeepd, 11 months ago

A shop sells three commodities. X purchases 2 units of q and sells 3 units of p and 3 units r. Y purchases 1 units of r and sells 2 units of p and 1 unit of q. Z purchases 3 unit of q and sells 4 units of p and 2 units of r. In the process X, Y, and Z earns Rs. 8,000, Rs.1000, and Rs. 4,000 respectively when price of item is p, q, and r per unit respectively (Consider selling units is positive earning and buying the units negative earnings)
i)Write system of simultaneous equations
ii)Find det.|A|
iii)Write transpose of A
Using matrices, find prices per unit of the three commodities

Answers

Answered by Swarup1998
0

Solution.

Given: Selling units are positive earnings and buying the units negative earnings.

X purchases 2 units of q and sells 3 units of p and 3 units r. X earns Rs. 8000

\Rightarrow 3p-2q+3r=8000\quad.....(1)

Y purchases 1 units of r and sells 2 units of p and 1 unit of q. Y earns Rs. 1000

\Rightarrow 2p+q-r=1000\quad.....(2)

Z purchases 3 unit of q and sells 4 units of p and 2 units of r. Z earns Rs. 4000

\Rightarrow 4p-3q+2r=4000\quad.....(3)

i) System of simultaneous equations.

Here the system of simulations equations is given by

\begin{array}{cccccccc}3p&-&2q&+&3r&=&8000&\quad...(1)\\2p&+&q&-&r&=&1000&\quad...(2)\\4p&-&3q&+&2r&=&4000&\quad...(3)\end{array}

In matrix form the system of linear equation can be written as

\quad\quad AX=B

where:

A=\begin{pmatrix} 3&-2&3 \\ 2&1&-1 \\ 4&-3&2\end{pmatrix}

X=\begin{pmatrix}p\\q\\r\end{pmatrix},\quad B=\begin{pmatrix}8000\\1000\\4000\end{pmatrix}

ii) Finding det(A).

We have found: A=\begin{pmatrix} 3&-2&3 \\ 2&1&-1 \\ 4&-3&2\end{pmatrix}

\Rightarrow det(A)=\left|\begin{array}{ccc} 3&-2&3 \\ 2&1&-1 \\ 4&-3&2\end{array}\right|

\Rightarrow det(A)=3(2-3)+2(4+4)+3(-6-4)

\quad(Expanding along R_{1}).

\Rightarrow det(A)=3(-1)+2(8)+3(-10)

\Rightarrow det(A)=-3+16-30

\Rightarrow \boxed{det(A)=-17}

iii) Finding A^{T}.

We have found: A=\begin{pmatrix} 3&-2&3 \\ 2&1&-1 \\ 4&-3&2\end{pmatrix}

\Rightarrow A^{T}={\begin{pmatrix} 3&-2&3 \\ 2&1&-1 \\ 4&-3&2\end{pmatrix}}^{T}

\Rightarrow \boxed{A^{T}=\begin{pmatrix}3&2&4\\-2&1&-3\\3&-1&2\end{pmatrix}}

iv) Finding solution.

Here, the system of simulations equations is given by

\quad 3p-2q+3r=8000\quad.....(1)

\quad 2p+q-r=1000\quad.....(2)

\quad 4p-3q+2r=4000\quad.....(3)

\therefore D=det{A}=-17

D_{1}=\left|\begin{array}{ccc}8000&-2&3\\1000&1&-1\\4000&-3&2\end{array}\right|

\quad=8000(2-3)+2(2000+4000)+3(-3000-4000)

\quad(Expanding along R_{1}).

\quad=8000(-1)+2(6000)+3(-7000)

\quad=-8000+12000-21000

\quad=-17000

D_{2}=\left|\begin{array}{ccc}3&8000&3\\2&1000&-1\\4&4000&2\end{array}\right|

\quad=3(2000+4000)-8000(4+4)+3(8000-4000)

\quad(Expanding along R_{1}).

\quad=3(6000)-8000(8)+3(4000)

\quad=18000-64000+12000

\quad=-34000

D_{3}=\left|\begin{array}{ccc}3&-2&8000\\2&1&1000\\4&-3&4000\end{array}\right|

\quad=3(4000+3000)+2(8000-4000)+8000(-6-4)

\quad(Expanding along R_{1}).

\quad=3(7000)+2(4000)+8000(-10)

\quad=21000+8000-80000

\quad=-51000

The solution of the given system of equations is given by:

\quad p=\frac{D_{1}}{D},\:q=\frac{D_{2}}{D},\:r=\frac{D_{3}}{D}

\Rightarrow p=\frac{-17000}{-17},\:q=\frac{-34000}{-17},\:r=\frac{-51000}{-17}

\Rightarrow \boxed{p=1000,\:q=2000,\:r=3000}

Therefore price of per unit p commodities is Rs. 1000, price of per unit q commodities is Rs. 2000 and price of per unit r commodities is Rs. 3000.

Read more on Brainly.in

Given A=[(3,\:-1),\:(1,\:2)], B=[3,\:1] and C=[1,\:-2]. Find matrix X such that AX=3B+2C

- https://brainly.in/question/16628164

Similar questions