Math, asked by shashwatirao30, 4 days ago

A shopkeeper buys 1 article for Rs 30 and sells it for a profit of 16%. Find the selling price of the article.​

Answers

Answered by mathdude500
22

\large\underline{\sf{Solution-}}

Given that, A shopkeeper buys 1 article for Rs 30 and sells it for a profit of 16%.

It means,

Cost Price of an Article = Rs 30

Profit % = 16 %

We know, Selling Price of an Article whose cost price and profit % is known, is evaluated as

\boxed{ \rm{ \:Selling \: Price =  \frac{(100 + Profit\%) \times Cost \: Price}{100} \: }} \\

So, on substituting the values, we get

\rm \: Selling \: Price = \dfrac{(100 + 16) \times 30}{100}  \\

\rm \: Selling \: Price = \dfrac{116 \times 3}{10}  \\

\rm \: Selling \: Price = \dfrac{348 }{10}  \\

\rm\implies \:Selling \: Price \:of \: an \: article  =  \: Rs \: 34.8 \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions