Math, asked by Angelinata, 1 day ago

A shopkeeper buys 90 articles for $ 2,700 and sells them at a profit of 30%. Find the selling price of each article.

This is from Percentage Chapter

Answers

Answered by mathdude500
28

\large\underline{\sf{Given- }}

A shopkeeper buys 90 articles for $ 2,700 and sells them at a profit of 30%.

\large\underline{\sf{To\:Find - }}

Selling Price of each article.

\large\underline{\sf{Solution-}}

Given that,

A shopkeeper buys 90 articles for $ 2,700 and sells them at a profit of 30%.

It means,

Cost Price of 90 articles = $ 2700

So,

Cost Price of 1 article = 2700 ÷ 90 = $ 30

Profit % = 30%

We know,

\boxed{\sf{ Selling\:Price =  \frac{(100 + Profit\%) \times Cost\:Price}{100} }} \\

So, on substituting the values, we get

\rm \: Selling\:Price = \dfrac{(100 + 30) \times 30}{100}  \\

\rm \: Selling\:Price = \dfrac{130 \times 3}{10}  \\

\rm\implies \:Selling\:Price = 39 \\

Hence,

Selling Price of each article is $ 39

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions