Math, asked by smkjune4, 18 days ago

a Shopkeeper buys a commodity for ₹ 760 .At what price should he sell it in order to make a profit of 12.5%?.​

Answers

Answered by nametake925
3

QUESTION :

  • a Shopkeeper buys a commodity for ₹ 760 .At what price should he sell it in order to make a profit of 12.5%?.

GIVEN :

  • Shopkeeper buys a commodity = ₹ 760

  • profits = 12 .5 %

to find :

  • what price should he sell it in order to make a profit of 12.5% = ?

solution :

cost price of commodity = ₹ 760

profits = 12.5 percentage

  • selling price = 100 + profits percentage /100 × cost price

  • selling price = (100 +12.5) / 100 × 760

  • selling price = 112.5/100 × 760

selling price = 855

so, shopkeeper profits = rs 855

knowledge required :

all formula :

CP = ( SP ×100 ) / ( 100 + % profit)

SP = CP [ 1 + ( Gain % x 100) ]

SP = CP [ 1 – ( %Loss x 100) ]

Selling Price = Profit + Cost Price

Selling Price = Cost Price – Loss

Answered by Anonymous
24

Answer:

Question :

A shopkeeper buys a commodity for ₹ 760. At what price should he sells it in order to make a profit of 12.5%?.

\begin{gathered}\end{gathered}

Given :

  • Cost Price = ₹760
  • Profit percent = 12.5%

\begin{gathered}\end{gathered}

To Find :

  • Selling Price

\begin{gathered}\end{gathered}

Using Formula :

{\longrightarrow{\small{\underline{\boxed{\sf{SP =  \dfrac{100 + P\%}{100} \times CP}}}}}}

Where :-

  • SP = Selling Price
  • P% = Profit percentage
  • CP = Cost Price

\begin{gathered}\end{gathered}

Solution :

Finding the Selling Price to make a profit of 12.5%.

{\longrightarrow \:  \: {\sf{SP =  \dfrac{100 + P\%}{100} \times CP}}}

{\longrightarrow \:  \: {\sf{SP =  \dfrac{100 + 12.5}{100} \times 760}}}

{\longrightarrow \:  \: {\sf{SP =  \dfrac{112.5}{100} \times 760}}}

{\longrightarrow \:  \: {\sf{SP =  \dfrac{112.5}{10 \cancel{0}} \times 76 \cancel{0}}}}

{\longrightarrow \:  \: {\sf{SP =  \dfrac{112.5}{10} \times 76 }}}

{\longrightarrow \:  \: {\sf{SP =  \dfrac{112.5 \times 76}{10}}}}

{\longrightarrow \:  \: {\sf{SP =  \dfrac{8550}{10}}}}

{\longrightarrow \:  \: {\sf{SP =   \cancel{\dfrac{8550}{10}}}}}

{\longrightarrow \:  \: {\sf{SP =   Rs.855}}}

{\bigstar \: {\underline{ \boxed {\sf{\red{Selling \: Price=   Rs.855}}}}}}

Hence, the selling price will be Rs.8550 to make 12.5% profit.

\begin{gathered}\end{gathered}

Learn More :

{\dashrightarrow{\underline{\boxed{\sf{\purple{P = SP  -  CP}}}}}}

{\dashrightarrow{\underline{\boxed{\sf{\purple{L = CP  - SP}}}}}}

{\dashrightarrow{\underline{\boxed{\sf{\purple{P \% = \dfrac{P}{CP} \times 100}}}}}}

{\dashrightarrow{\underline{\boxed{\sf{\purple{L \% = \dfrac{L}{CP} \times 100}}}}}}

{\dashrightarrow{\underline{\boxed{\sf{\purple{SP =  \frac{100 + P\%}{100} \times CP}}}}}}

{\dashrightarrow{\underline{\boxed{\sf{\purple{SP =  \frac{100  - L\%}{100} \times CP}}}}}}

{\dashrightarrow{\underline{\boxed{\sf{\purple{CP =  \frac{100}{100 + P \%} \times CP}}}}}}

{\dashrightarrow{\underline{\boxed{\sf{\purple{CP =  \frac{100}{100  - L\%} \times CP}}}}}}

{\dashrightarrow{\underline{\boxed{\sf{\purple{Discount = MP -  SP}}}}}}

{\dashrightarrow{\underline{\boxed{\sf{\purple{SP = MP  - Discount}}}}}}

Where :-

  • ➤ P = Profit
  • ➤ L = Loss
  • ➤ P% = Profit%
  • ➤ L% = Loss%
  • ➤ C.P = Cost Price
  • ➤ S.P = Selling Price
  • ➤ M.P = Marked Price

\underline{\rule{200pt}{2.5pt}}


Aryan0123: Awesome :)
Similar questions