Math, asked by pankaj260319, 10 months ago

a shopkeeper marks the price of the article in such a way that after allowing 28% discount he wants a gain of 12% if the marked price is rs224 the the cost price of the article is??​

Answers

Answered by StarrySoul
61

Solution :

Given Marked Price of Article is Rs 224 and Discount = 28%

Let's Find Discount Amount First :

 \sf  \star \: \: 28\% \: of \: 224

 \hookrightarrow \sf \cancel \dfrac{6272}{100}

 \hookrightarrow \sf Rs \: 62.72

Let's Find Selling Price Now

 \bigstar \boxed{ \sf \: Selling \:  Price = Marked  \: Price -  \: Discount }

 \hookrightarrow \sf \: Rs \:( 224 - 62.72)

 \hookrightarrow \sf \: Rs  \: 161.28

Given Profit % = 12%

Let's Find Cost Price Now

 \bigstar \boxed{ \sf \: Cost  \: Price =  \frac{Selling \:  Price  \times 100}{100 +  Profit }}

 \hookrightarrow \sf   \dfrac{161.28 \times 100}{100 + 12}

 \hookrightarrow \sf  \cancel \dfrac{16128}{112}

 \hookrightarrow \sf \: Rs \: 144

Hence,Cost Price of the Article is Rs 144

Answered by Anonymous
44

AnswEr :

Rs.144.

\bf{\purple{\underline{\underline{\bf{Given\::}}}}}

A shopkeeper marks the price of the article in such a way that after allowing 28% discount he wants a gain of 12% .If the marked price is Rs.224.

\bf{\red{\underline{\underline{\bf{To\:find\::}}}}}

The price of the article (Cost price) .

\bf{\orange{\underline{\underline{\bf{Explanation\::}}}}}

\bf{We\:have}\begin{cases}\sf{Discount,(D)=28\%}\\ \sf{Profit\%=12\%}\\ \sf{Marked\:price,(M.P.)=Rs.224}\end{cases}}

Formula use :

\bf{\boxed{\bf{Discount=\frac{Marked\:price\times Discount\%}{100} }}}}}}

A/q

\Rightarrow\tt{Discount=\dfrac{224\times 28}{100} }\\\\\\\\\Rightarrow\tt{Discount=\cancel{\dfrac{6272}{100} }}\\\\\\\\\Rightarrow\tt{\pink{Discount=Rs.62.72}}

So,

\leadsto\sf{Selling\:price,(S.P.)=Marked\:price-Discount}\\\\\\\leadsto\sf{Selling\:price,(S.P.)=Rs.(224-62.72)}\\\\\\\leadsto\sf{\red{Selling\:price,(S.P.)=Rs.161.28}}

A shopkeeper gain of 12%, we get;

Formula use :

\bf{\boxed{\bf{Cost\:price,(C.P.)=\frac{100}{100+profit\%} \times S.P.}}}}}}}

\mapsto\tt{C.P.=\dfrac{100}{100+12} \times 161.28}\\\\\\\\\mapsto\tt{C.P.=\dfrac{100}{112} \times 161.28}\\\\\\\\\mapsto\tt{C.P.=\cancel{\dfrac{16128}{112} }}\\\\\\\\\mapsto\tt{\red{C.P.=Rs.144}}

Thus,

\bf{\large{\underbrace{\sf{The\:cost\:of\:the\:article\:is\:\:Rs.144}}}}}}}

Similar questions