Math, asked by dhaliwalkaran897, 3 days ago

A shopkeeper sells an article at loss of 12.5%. Had he sold it for Rs. 51.80 more then he would have earned a profit of 6%. The cost price of the article is: *​

Answers

Answered by mathdude500
37

\large\underline{\sf{Solution-}}

Given that,

  • A shopkeeper sells an article at loss of 12.5%.

Let assume that

Cost Price of an article = Rs x

Loss % = 12.5 %

We know,

\boxed{ \rm{ \:Selling \: Price = \dfrac{(100 - loss\%) \times Cost \: Price}{100} \: }} \\

So, on substituting the values, we get

\rm \: Selling \: Price = \dfrac{(100 - 12.5) \times x}{100}  \\

\rm\implies \:\rm \: Selling \: Price = \dfrac{87.5x}{100}  \\

Now, further given that had he sold it for Rs. 51.80 more then he would have earned a profit of 6%.

Now,

\rm \: Cost \: Price \:  =  \: Rs \: x \\

\rm \: Selling \: Price \:  =  \: Rs \: \dfrac{87.5x}{100} + 51.80 \\

\rm \: Profit \:\% \:  =  \: 6 \: \% \\

We know,

\boxed{ \rm{ \:Selling \: Price = \dfrac{(100 + Profit\%) \times Cost \: Price}{100} \: }} \\

\rm \: \dfrac{87.5x}{100} + 51.80  = \dfrac{(100 + 6) \times x}{100}

\rm \: \dfrac{87.5x + 5180}{100}   = \dfrac{106x}{100}

\rm \: 87.5x + 5180 = 106x \\

\rm \: 5180 = 106x  - 87.5x\\

\rm \: 18.5x = 5180 \\

\rm\implies \:x = 280 \\

Thus,

\rm\implies \:\boxed{ \rm{ \:Cost \: Price \: of \: an \: article \:  =  \: Rs \: 280 \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions