Math, asked by sarangtiwari65, 6 days ago

A shopkeeper sold two radio at Rs 700 each. On one he gains 12% and on the other he less 20%. Find the loss or gain percent in the whole transaction.​

Answers

Answered by adityavks13
1

Answer:

» To Find :

The Profit or Loss Percentage in the whole transaction.

» Given :

Cost Price of the Two Radios = ₹ 700.

Profit percentage on the first Radio = 12 %

Loss Percentage on the second Radio = 20 %

» We Know :

Selling Price :

\sf{\underline{\boxed{SP = \left(1 \pm \dfrac{Profit/loss}{100}\right)\:of\:CP}}}

SP=(1±

100

Profit/loss

)Of CP

Profit Percentage :

\sf{\underline{\boxed{P\% = \left(\dfrac{P}{CP} \times 100\right)\%}}}

P%=(

CP

P

×100)%

Loss Percentage :

\sf{\underline{\boxed{L\% = \left(\dfrac{L}{CP} \times 100\right)\%}}}

L%=(

CP

L

×100)%

Where ,

P = Profit

L = Loss

SP = Selling Price

CP = Cost Price

P% = Profit Percentage

L% = Loss Percentage

Profit /Loss :

Profit = SP - CP

Loss = CP - SP

» Concept :

According to the question , we have to find the Profit/loss % on the whole transaction.

So ,first we have to find the total Cost Price and then the total selling price of the transaction.

And then , by using the profit /loss Percentage Formula, we can find the Total Gain/Loss Percentage.

» Solution :

Total Cost Price :

Cost of the two radios = 700

So, the If we add the cost price of the two radios ,then we will get the total cost Price i.e,

\sf{\Right Arrow 700 + 700}⇒700+700

\sf{\Right Arrow 1400}⇒1400

Hence, the Total Cost Price of the whole transaction is ₹ 1400.

Total Selling Price :

Selling price of the First Radio :

CP = ₹ 700

P % = 12 %

Using the formula ,and substituting the value in it ,we get :

\sf{\underline{\boxed{SP = \left(1 + \dfrac{Profit}{100}\right)\:of\:CP}}}

SP=(1+

100

Profit

)Of CP

\sf{\Right Arrow SP = \left(1 + \dfrac{12}{100}\right) \times 700}⇒SP=(1+

100

12

)×700

\sf{\Right Arrow SP = \left(\dfrac{100 +12}{100}\right) \times 700}⇒SP=(

100

100+12

)×700

\sf{\Right Arrow SP = \left(\dfrac{112}{100}\right) \times 700}⇒SP=(

100

112

)×700

\sf{\Right Arrow SP = \left(\dfrac{112}{\cancel{100}}\right) \times 7\cancel{00}}⇒SP=(

100

112

)×7

00

\sf{\Right Arrow SP = 112 \times 7}⇒SP=112×7

\sf{\Right Arrow SP = 784}⇒SP=784

Hence ,the selling price for first Radio is ₹ 784.

Selling price of the second Radio :

CP = ₹ 700

L % = 20 %

Using the formula ,and substituting the value in it ,we get :

\sf{\underline{\boxed{SP = \left(1 - \dfrac{Loss}{100}\right)\:of\:CP}}}

SP=(1−

100

Loss

)Of CP

\sf{\Rightarrow SP = \left(1 - \dfrac{20}{100}\right) \times 700}⇒SP=(1−

100

20

)×700

\sf{\Rightarrow SP = \left(\dfrac{100 - 20}{100}\right) \times 700}⇒SP=(

100

100−20

)×700

\sf{\Rightarrow SP = \left(\dfrac{80}{100}\right) \times 700}⇒SP=(

100

80

)×700

\sf{\Rightarrow SP = \left(\dfrac{80}{\cancel{100}}\right) \times 7\cancel{00}}⇒SP=(

100

80

)×7

00

\sf{\Rightarrow SP = 80 \times 7}⇒SP=80×7

\sf{\Rightarrow SP = 560}⇒SP=560

Hence ,the selling price for first Radio is ₹ 560.

Total Selling Price = Selling Price on the First Radio + Selling Price on the second Radio.

\sf{\Rightarrow 784 + 560}⇒784+560

\sf{\Rightarrow 1344}⇒1344

Hence, the Total selling Price of the whole transaction is ₹ 1344.

ATS ,

Since ,the Selling Price is less than the Cost Price , it is loss.

To Find the Loss For the Whole transaction :

Total Selling Price = ₹ 1344

Total Cost Price = ₹ 1400

Using the formula ,and Substituting the values in it ,we get :

\sf{\underline{\boxed{Loss = CP - SP}}}

Loss=CP−SP

\sf{\Rightarrow Loss = 1400 - 1344}⇒Loss=1400−1344

\sf{\Rightarrow Loss = 56}⇒Loss=56

Hence , the loss on the whole transaction is ₹ 56.

Loss Percentage :

Loss = ₹ 56

CP = ₹ 1400

Using the formula and substituting the values in it , we get :

\sf{\underline{\boxed{L\% = \left(\dfrac{L}{CP} \times 100\right)\%}}}

L%=(

CP

L

×100)%

\sf{\Rightarrow L\% = \left(\dfrac{56}{1400} \times 100\right)\%}⇒L%=(

1400

56

×100)%

\sf{\Rightarrow L\% = \left(\dfrac{56}{14\cancel{00}} \times \cancel{100}\right)\%}⇒L%=(

14

00

56

×

100

)%

\sf{\Rightarrow L\% = \left(\dfrac{56}{14}\right)\%}⇒L%=(

14

56

)%

\sf{\Rightarrow L\% = \left(\dfrac{\cancel{56}}{\cancel{14}}\right)\%}⇒L%=(

14

56

)%

\sf{\Rightarrow L\% = 4 \%}⇒L%=4%

Hence ,the loss Percentage on the whole transaction is 4 %.

» Additional information :

Percentage Less =

\left(\dfrac{(Greater - smaller)}{Greater} \times 100\right)\%(

Greater

(Greater−smaller)

×100)%

CP =

\dfrac{100 \times SP}{100 \pm Profit/Loss\%}

100±Profit/Loss%

100×SP

Similar questions