Math, asked by Ulfat123, 10 months ago

A shot putt is a metallic sphere of radius 4.9cm. If the density of the metal is 7.8 per cm^3. Find the mass of the shot putt.

Answers

Answered by ButterFliee
9

\huge{\underline{\underline{\mathrm{\blue{GIVEN:-}}}}}

  • Radius of metallic sphere = 4.9 cm
  • Density of metal = 7.8 g/cm³

\huge{\underline{\underline{\mathrm{\blue{NEED\:TO\:FIND:-}}}}}

What is the mass of the shot putt = ?

\huge{\underline{\underline{\mathrm{\blue{FORMULA \:USED:-}}}}}

\bf\red{Volume \:of\: sphere = \frac{4}{3}\timesπ{r}^{3}}

\bf\red{Mass = Density \:\times\: Volume}

\huge{\underline{\underline{\mathrm{\blue{SOLUTION:-}}}}}

Firstly, we need to find the volume

Putting the given values in formula, we get

\implies \bf{\frac{4}{3} \times\frac{22}{7 }\times{ (4.9)}^{3}}

\implies\bf{\frac{4}{3}\times{22}{7} \times4.9 \times 4.9 \times 4.9 }

\implies\bf{\frac{88}{21}\times117.649}

\implies\cancel\dfrac{10353.112}{21}

\large\bf\green{Volume = 493\: {cm}^{3}approx.}

Now, we have to find the mass of metal

\bf\red{Mass = Density \times Volume}

\implies\bf{Mass = 7.8 \times 493}

\large\bf\green{ Mass = 3845.4\: g }

Convert g into kg

\implies\rm{ 1\: kg = 1000\: g}

\implies\rm{\frac{3845.4}{1000} = 3.8454\: kg}

\large{\underline{\underline{\mathrm{\blue{FINAL\:ANSWER:-}}}}}

\huge{\boxed{\boxed{\mathrm{\green{Mass = 3.8454 \:kg}}}}}

Answered by silentlover45
2

Given:

Radius of sphere = 4.9cm

Density of metal = 7.8g/cm³

Formula used;

Vol of sphere = 4/3 × πr³

Mass = density × vol

Solutions:

4/3 × 22/7 × (4.9)³

4/3 × 22/7 × 4.9 × 4.9 × 4.9

88/21 × 117.649

10353.112/21

493cm³

Vol = 493cm³

Mass = Density × Vol

M = 7.8 × 493

M = 3845.4g

M = 3.8454kg

silentlover45.❤️

Similar questions