a) Show that 2sin B + 4cos(a+ß) sina sinB+ cos 2(a +B) = cos2a.
b) Solve Square root 3 Cosò=square root 2
Answers
Answered by
1
Answer:
a=2sin
2
β+4cos(α+β)sinαsinβ+cos2(α+β)
⇒a=2sin
2
β+2cos(α+β)(2sinαsinβ)+cos2(α+β)
⇒a=1−cos2β+2cos(α+β)(cos(α−β)−cos(α+β))+cos2(α+β)
...{∵cos2A=1−2sin
2
A&2sinAsinB=cos(A−B)−cos(A+B)}
⇒a=1−cos2β+(2cos(α+β)cos(α−β))−(2cos
2
(α+β))+cos2(α+β)
⇒a=1−cos2β+(2cos(α+β)cos(α−β))−(2cos
2
(α+β))+cos2(α+β)
⇒a=1−cos2β+(cos2α+cos2β)−(1+cos2(α+β))+cos2(α+β)
...{∵cos2A=2cos
2
A−1&2cosAcosB=cos(A+B)+cos(A−B)}
∴a=cos2α
Similar questions