Physics, asked by sweety29193761, 8 months ago

A)Show that the path of projectile is parabola. (2 ) B) derive the formula of (1)time of flight. ( 1) (2) Maximum height (1) (3) horizontal range. (1)


Answers

Answered by himavarshini5783
1

Answer:

(A) Path of projectile is parabola

x = u \cos( \alpha ) t  \:  \:  \:  \: \\ t =  \frac{x}{u \cos( \alpha ) }  \:  \:  \:  \:  \:  \: eq \: 1\\ y = u \sin( \alpha ) t -  \frac{1}{2}g {t}^{2}   \\ from \: eq \: 1 \\ y = u \sin( \alpha )  (\frac{x}{u \cos( \alpha ) }) +  \frac{1}{2}g ({ \frac{x}{u \cos( \alpha ) } })^{2}   \\ y =  \tan( \alpha ) x + ( \frac{g}{2 {u}^{2} { \cos( \alpha ) }^{2}  })  {x}^{2} \\ this \: is \: a \: second \: degree \: equation \\ so \: its \: path \: is \: parabola

(B) 1 Time of flight (t)

in \: this \: tme \: the \:  \\ vertical \: displacemet \: is \: 0 \\ y = 0 \\ u \sin( \alpha ) t -  \frac{1}{2} g {t}^{2} = 0 \\ u \:  \sin( \alpha ) t \:  =  \frac{1}{2} g {t}^{2}  \\ t =  \frac{2u \sin( \alpha ) }{g}

2 Maximum height (h)

at \: the \: maximum \: height \:   the \:  final \: \\  vertical \:  component \: of \: velocity \: is \: 0 \\  {v}^{2} -  {u}^{2}  = 2as \\ 0 -  {(u \sin( \alpha ) )}^{2} =  - 2gh \\ h =   \frac{ {u}^{2} { \sin( \alpha ) }^{2}  }{2g}

3 Range(r)

range \: is \: horizontal \: displacement \:  \\ during \: time \: of \: flight \\ r = u \cos( \alpha ) t \\ r = u \cos( \alpha ) (\frac{ 2u\sin( \alpha ) }{g} ) \\ r =  \frac{ {u}^{2}(2  \sin( \alpha ) \cos( \alpha ))   }{g} \\ r =   \frac{ {u}^{2}  \sin(2 \alpha ) }{g}

Similar questions