Math, asked by 20gayatriwadatkar, 9 months ago

a Side of an equilateral triangle is 6 cm
find the height of the triangle and area​

Answers

Answered by SarcasticL0ve
7

⋆ Given:-

  • Sides of equilateral triangle = 6 cm

⋆ To find:-

  • Height of Triangle

  • Area of Triangle

⋆ Solution:-

★ Area of equilateral ∆ =  \sf{ \dfrac{ \sqrt{3}}{4} \times a^2}

\implies \sf{ \dfrac{ \sqrt{3}}{4} \times 6 \times 6}

\implies \sf{ \dfrac{ \sqrt{3}}{4} \times 36}

\implies \sf{ \dfrac{ \sqrt{3}}{ \cancel{4} }\times \cancel{36}}

\implies \sf{9 \sqrt{3} \; cm^2}

Also,

★ Area of ∆ =  \sf{ \dfrac{1}{2} \times base \times height}

\implies \sf{9 \sqrt{3} = \dfrac{1}{ \cancel{2}} \times \cancel{6} \times H}

\implies \sf{\dfrac{9 \sqrt{3}}{3} =  H}

\implies \sf{H = 3 \sqrt{3}}

Hence,

★ Area of equilateral ∆ =  \sf{9 \sqrt{3} \; cm^2}

★ And, Height of equilateral ∆ =  \sf{3 \sqrt{3} \; cm}

\rule{200}{2}

Answered by Anonymous
2

Given that ,

  • Side of equilateral triangle (a) = 6 cm

We know that , the area of equilateral triangle is given by

 \large \sf \underline{ \fbox{Area  \: of  \: Δ =  \frac{ \sqrt{3}  \times  {(a)}^{2} }{4} }}

Thus ,

\sf \Rightarrow Area =  \frac{ \sqrt{3} \times  {(6)}^{2}  }{4}  \\  \\\sf \Rightarrow  Area =  \frac{ \sqrt{3} \times 36 }{4} \\  \\\sf \Rightarrow Area =  9 \sqrt{3}   \:  \:  {m}^{2}

 \therefore  \underline \bold{ \sf{The \:  area  \: of \:  equilateral \:  triangle \:  is \: 9 \sqrt{ 3}  \:  \:  {m}^{2}  }}

Now ,

 \sf  \underline{\fbox{Area  \: of  \: Δ  =  \frac{1}{2} \times base  \times height }}

Thus ,

\sf \Rightarrow 9 \sqrt{3}  =  \frac{1}{2}  \times 6 \times height \\  \\\sf \Rightarrow  height = 3 \sqrt{3}  \:  \: m

 \therefore   \sf{\underline{ The\: height \:  of  \: triangle \:  is  \: 3 \sqrt{3}  \:  \: m}}

Similar questions