á Sides of a triangle are in the ratio of 12:17:25 and its perimeter is 540cm. Find its area
Answers
Answer:
Ratio = 12:17:25
Let the sides be 12x , 17x , 25x respectively.
12x + 17x + 25x = 540
⇒ 54x = 540
⇒ x = 540/54
⇒ x = 10
∴ The sides are 120cm , 170cm , 250cm .
Step-by-step explanation:
→Question: Sides of a triangle are in the ratio of 12:17:25 and its perimeter is 540cm. Find its area.
↔Solution:
→Given: Sides of triangle in the ratio=12:17:25
: Perimeter of the triangle =540cm
→To find:
:Area of the triangle
Now,
Area of Triangle=√s(s-a)(s-b)(s-c) (Heron's Formula)
Here,
- s=semi perimeter
- a,b,c are sides of the triangle
Perimeter=540cm
Semi Perimeter=540÷2
Semi Perimeter=270cm
Sides in the ratio=12:17:25
so, 12x,17x,25x (x is any number)
Perimeter=540cm
a+b+c=540cm (perimeter=sum of all sides)
12x+17x+25x=540
54x=540
x=540÷54
∴x=10
- 12x=12×10=120cm
- 17x=17×10=170cm
- 25x=25×10=250cm
Now,Area of Triangle=√s(s-a)(s-b)(s-c)
We have the values of a,b,c
So,let's substitute and find the area.
⇔√s(s-a)(s-b)(s-c)
⇔√270(270-120)(270-170)(270-250)
⇔√270×150×100×20
⇔√27×15×2×10^5
⇔√27×30×10^5
⇔√27×3×10^6 (the o of 30 is transposed to 10^5)
⇔√81×10^6
⇔√9²×10^6
⇔9×(10^6)1/2
⇔9×10³
⇔9000
∴Area of the triangle=9000cm²