Physics, asked by shindesujata401, 8 days ago

A simple generator has a 300 loop square coil of side 20 cm turning in a field of 0.7 T. How fast must it turn to produce a peak output of 210 V?​

Answers

Answered by BlessedOne
52

Given :

  • Number of loops = 300
  • Length of the coil = 20 cm
  • Magnetic field = 0.7 T
  • EMF induced = 210 V

To find :

  • Velocity of the coil to produce a peak output of 210 V.

Formula to be used :

\bf\:\maltese \bf\color{black}{\:ε_{ind}~=~VBL}

‎where,

  • \sf\:ε_{ind} denotes emf induced
  • L denotes length of the coil
  • B denotes the magnetic field

Solution :

In the question it is mentioned that there are 300 loops so we need to modify the formula and multiply it with N which is equal to number of loops.

‎Therefore,

\sf\:ε_{ind}~=~N(VBL)

Substituting the given values

\sf\longrightarrow\:210~=~300(V \times 0.7 \times 20)

\sf\longrightarrow\:210~=~300(V \times \frac{7}{10} \times 20)

\sf\longrightarrow\:210~=~300(V \times \frac{140}{10})

\sf\longrightarrow\:210~=~300(V \times \frac{14\cancel{0}}{1\cancel{0}})

\sf\longrightarrow\:210~=~300(V \times 14)

\sf\longrightarrow\:210~=~300 \times 14 \times V

\sf\longrightarrow\:\frac{210}{300 \times 14}~=~V

\sf\longrightarrow\:\frac{21\cancel{0}}{30\cancel{0} \times 14}~=~V

\sf\longrightarrow\:\frac{21}{30 \times 14}~=~V

\sf\longrightarrow\:\frac{\cancel{21}}{30 \times \cancel{14}}~=~V

\sf\longrightarrow\:\frac{3}{30 \times 2}~=~V

\sf\longrightarrow\:\frac{\cancel{3}}{\cancel{30} \times 2}~=~V

\sf\longrightarrow\:\frac{1}{10 \times 2}~=~V

\sf\longrightarrow\:\frac{1}{20}~=~V

\small{\underline{\boxed{\mathrm{\longrightarrow\:V~=~0.05~m/s}}}}

Verification :

Let's verify our result with the formula.

\sf\:ε_{ind}~=~N(VBL)

\sf\to\:210~=~300(0.05 \times 0.7 \times 20)

\sf\to\:210~=~300(\frac{5}{100} \times \frac{7}{10} \times 20)

\sf\to\:210~=~300(\frac{35}{1000} \times 20)

\sf\to\:210~=~300(\frac{700}{1000})

\sf\to\:210~=~300(\frac{7\cancel{00}}{10\cancel{00}})

\sf\to\:210~=~300(\frac{7}{10})

\sf\to\:210~=~\frac{2100}{10}

\sf\to\:210~=~\frac{210\cancel{0}}{1\cancel{0}}

\sf\to\:210~=~210

Hence Verified !~

═══════════════════════

Note : I have explained simple calculations as well therefore it's looking‎ long you can escape some of the steps . Using the formula it has got very short calculation !

:D

Answered by muhammedrafitm8
0

Answer:

Number of loops = 300

Length of the coil = 20 cm

Magnetic field = 0.7 T

EMF induced = 210 V

Explanation:

pls make me as brainlist

Similar questions