Physics, asked by brajakishorebpd, 12 hours ago

A simple magnifying lens is used by watch repairer in such a way that an image is formed at 25 cm away from the eye. If he want to increase the magnification by 10 times, then the focal length of the lens should be
(a) 2.7 cm
(b) 2.7 mm
(c) 27 cm
(d) 10 cm​

Answers

Answered by sharanya300013
2

Answer: 2.7 cm; option A

Explanation:

10= 1 + 25/fe

9= 25/ fe

fe= 25/9= 2.7cm

Mark me brainliest if it heLps.

Answered by bhuvna789456
1

A watch repairer uses a simple magnifying lens to create an image at a distance of 25 cmfrom the eye. The focal length of the lens should be  "(a)2.7 cm" if he wants to raise the magnification by10 times.

Step by step explanation:

Given:

Distance of the image(v) : 25cm

Magnification(m): 10 times

To find:

Focal length of the lens

Solution:

Lens formula

                      \frac1v-\frac1u=\frac1f

where,

u =distance of object from pole,v = distance of image from pole andf =focal length of the lens.

The object is positioned at a distance of -ucm and created at a distance of v = -25 cm.

magnification of  lens m=\frac vu

Substituting the values of m and v,

                         10=\frac vu

                     10=\frac{-25}u

                      u=\frac{-25}{10}

                      u=-2.5 cm

The focal length can be computed using the lens formula using the values of u and v.

                     \frac1v-\frac1u=\frac1f

         \frac1{(-25)}-\frac1{(-2.5)}=\frac1f

                  \frac1{25}-\frac1{2.5}=\frac1f

                             \frac1f=\frac{10-1}{25}

                            f=\frac{25}9

                           f=2.7cm

Focal length of the lens is2.7cm

Similar questions