Physics, asked by surtibrothers01, 6 months ago

· A simple pendulum of length 100 cm
performs S.H.M. Find the restoring force
acting on its bob of mass 50 g when the
displacement from the mean position is 3 cm.​

Answers

Answered by Anonymous
6

\dag \: \underline{\sf AnsWer :} \\

  • We are provided a simple pendulum whose length of string (l) is 100 cm. convert the unit of length of string from cm to m then we get length as 1 m. we are also given the mass of simple pendulum (m) = 50 g = 5 × 10⁻³ kg and displacement (x) = 3 cm = 3 × 10⁻² m. We need to find the restoring force (F) acting on the bob. So, let's solve :

:\implies\sf \omega =\sqrt{ \dfrac{K}{m}} \\  \\

:\implies\sf \omega^{2}  =\dfrac{K}{m}\\  \\

:\implies\sf  K = m\omega^{2} \\    \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━

\qquad \: \bigstar \:  \underline{\textbf{Finding Angular velocity :}} \\

:\implies\sf  T =2\pi \sqrt{\dfrac{L}{g}}\\  \\

:\implies\sf \dfrac{2\pi}{ \omega}  =2\pi \sqrt{\dfrac{L}{g}}\\  \\

:\implies\sf \dfrac{1}{ \omega}  =\sqrt{\dfrac{L}{g}}\\  \\

:\implies\sf \omega =\sqrt{\dfrac{g}{L}}\\  \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━

\qquad \: \bigstar \:  \underline{\textbf{Finding Restoring force :}} \\

 \dashrightarrow\:\:\sf F = -kx \\  \\

\dashrightarrow\:\:\sf F = -(m \omega^{2} )x \\  \\

\dashrightarrow\:\:\sf F = -m  \times  \Bigg(\sqrt{\dfrac{g}{L}}\Bigg)^{2}  \times x \\  \\

\dashrightarrow\:\:\sf F = -m  \times  \dfrac{g}{L}\times x \\  \\

\dashrightarrow\:\:\sf F = -50 \times 10^{ - 3}  \times  \dfrac{10}{1}\times 3 \times  {10}^{ - 2}  \\  \\

\dashrightarrow\:\:\sf F = -1500 \times 10^{ - 5}   \\  \\

\dashrightarrow\:\: \underline{ \boxed{\sf F = -1.5 \times 10^{ - 2} \:  N }} \\  \\

Similar questions