(a) Simplify the Boolean function F= A'B'C'+B'CD' + A'BCD' + AB'C'
Answers
Answered by
3
Answer:
I'm assuming A′ is notation for "not A". Observe that you can factor out AC from several terms (the second, third, fifth, and sixth):
A′BCD+AB′CD′+AB′CD+ABC′D+ABCD′+ABCD=AC(B′D′+B′D+BD′+BD)+A′BCD+ABC′D
Then replace 1=(B′+B)(D′+D)=(B′D′+B′D+BD′+BD) to get
=AC+A′BCD+ABC′D.
Finally, observe that AC+A′BCD=AC+BCD, because if C=B=D=1, then either A=1 so AC=1 or A=0 so A′BCD=1. Similarly AC+ABC′D=AC+ABD because if A=B=D=1, then either C=1 so AC=1 or C=0 so ABC′D=1. So make two final substitutions to get
=AC+BCD+ABD.
Explanation:
PAWAN KULORA
Similar questions
English,
1 month ago
Physics,
1 month ago
Social Sciences,
3 months ago
English,
3 months ago
Science,
10 months ago