Math, asked by Anonymous, 3 months ago

(a) Simply:
\sf\{( {3x}^{2} - 6x + 5) + (2x - {2x}^{2} + 5)\} - ( {x}^{2} - 4x + 10)

(b) Subtract:

= \sf{4p}^{2}q - 3pq + {5pq}^{2} - 8p + 7p - 10
from
= \sf18 - 3p - 11q + 5pq - {2pq}^{2} + {5p}^{2}q

Note:
- Kindly Dont Spam
- Need Quality Answer!​

Answers

Answered by ItsRuchikahere
7

A

\sf\{( {3x}^{2} - 6x + 5) + (2x - {2x}^{2} + 5)\} - ( {x}^{2} - 4x + 10) \\  = {( {x}^{2}  - 4x + 10)} - { ({x}^{2} - 4x + 10 )} \\  = 0

Answered by Anonymous
84

{ \underline{ \boxed{ \blue{ \rm{Solution \: 1}}}}}

Question:

  • (a) Simply: \sf\{( {3x}^{2} - 6x + 5) + (2x - {2x}^{2} + 5)\} - ( {x}^{2} - 4x + 10)

Solution:

Expression:

\sf\{( {3x}^{2} - 6x + 5) + (2x - {2x}^{2} + 5)\} - ( {x}^{2} - 4x + 10)

  • Now first let's solve the expression in the flower brackets

 \longrightarrow\tt \{( {3x}^{2} - 6x + 5) + (2x - {2x}^{2} + 5)\} - ( {x}^{2} - 4x + 10) \\  \\  \\  \longrightarrow\tt \: (3 {x}^{2}  - 6x + 5 + 2x - 2 {x}^{2}  + 5) - ( {x}^{2}  - 4x + 10) \:  \:  \:  \:  \:  \:  \:  \:

  • Now let's group the like terms in the first bracket

 \longrightarrow\tt \: (3 {x}^{2}  - 2 {x}^{2}  - 6x + 2x + 5 + 5) - ( {x}^{2}  - 4x + 10) \\  \\  \\  \longrightarrow\tt( {x}^{2} - 4x + 10) - ( {x}^{2}   - 4x + 10) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Now as we've got the minus sign before the 2nd bracket let's multiply it with the expression in the second bracket and merge it with terms in first bracket

 \longrightarrow\tt \: ( {x}^{2}  - 4x + 10  -  {x}^{2}  + 4x  - 10)

  • Now let's group the like terms and simplify it again

 \longrightarrow\tt(  \cancel{x}^{2}  -  \cancel{x}^{2}  - 4x + 4x  +\cancel 10 -\cancel 10) \\  \\  \\  \longrightarrow\tt( - 4x + 4x) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow{ \boxed{ \frak{ 0 }} \star} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Hence, the answer is 0

{ \underline{ \boxed{ \blue{ \rm{Solution \: 2}}}}}

Question:

  • (b) Subtract:

\sf{4p}^{2}q - 3pq + {5pq}^{2} - 8p + 7p - 10

from

\sf18 - 3p - 11q + 5pq - {2pq}^{2} + {5p}^{2}q

Solution:

  • Expression 1

\sf18 - 3p - 11q + 5pq - {2pq}^{2} + {5p}^{2}q

  • Expression 2

\sf{4p}^{2}q - 3pq + {5pq}^{2} - 8p + 7p - 10

Let's subtract them now,

 {\longrightarrow}\tt(\sf18 - 3p - 11q + 5pq - {2pq}^{2} + {5p}^{2}q) -(  {4p}^{2}q - 3pq + {5pq}^{2} - 8p + 7p - 10 )

  • Let's multiply the sign minus with the second expression

 {\longrightarrow}\tt(\sf18 - 3p - 11q + 5pq - {2pq}^{2} + {5p}^{2}q -  {4p}^{2}q  +  3pq  -  {5pq}^{2}  + 8p  -  7p  +  10 )

  • Grouping like terms

 {\longrightarrow}\tt(\sf18 + 10- 3p  + 8p \:-  7p    -  11q + 5pq - {2pq}^{2} + {5p}^{2}q   -   {4p}^{2}q  +  3pq  -  {5pq}^{2}    ) \\  \\  \\  \longrightarrow\sf(28 - 2p - 11q + 5pq - 2p {q}^{2}  + 1 {p}^{2} q + 3pq - 5p {q}^{2} ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow\sf(28 - 2p - 11q + 5pq + 3pq - 2p {q}^{2}  - 5p {q}^{2}  +  {p}^{2} q) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow\sf(28 - 2p - 11q + 8pq - 7p {q}^{2}  +  {p}^{2} q )\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Hence solved.!!!
Similar questions