a sin o +b cos o =c prove that a cos o - b sin =√a^2+b^2-c^2
Answers
Answered by
0
Answer:
Asinθ + bcosθ = c
taking square both sides,
(asinθ + bcosθ)² = c²
⇒a²sin²θ + b²cos²θ + 2absinθ.cosθ = c² --------(1)
Let acosθ - bsinθ = x
Squaring both sides
(acosθ - bsinθ)² = x²
⇒a²cos²θ + b²sin²θ -2absinθ.cosθ = x² ------(2)
Add equation (1) and (2),
a²sin²θ + b²cos²θ +2abinθ.cosθ + a²cos²θ + b²sin²θ -2absinθ.cosθ = c² + x²
⇒(a² + b²)cos²θ + (a² +b²)sin²θ = c² + x²
⇒(a² + b²)[sin²θ + cos²θ ] = c² + x²
⇒(a² + b²) = c² + x² [∵ sin²x + cos²x = 1 ]
⇒(a² + b² - c²) = x²
Take square root both sides,
√(a²+b²-c²) =x
Hence, acosθ - bsinθ =√(a²+b²-c²)
Similar questions