Math, asked by arunraj5480, 11 months ago

a sin o +b cos o =c prove that a cos o - b sin =√a^2+b^2-c^2​

Answers

Answered by pal69
0

Answer:

Asinθ + bcosθ = c

taking square both sides,

(asinθ + bcosθ)² = c²

⇒a²sin²θ + b²cos²θ + 2absinθ.cosθ = c² --------(1)

Let acosθ - bsinθ = x

Squaring both sides

(acosθ - bsinθ)² = x²

⇒a²cos²θ + b²sin²θ -2absinθ.cosθ = x² ------(2)

Add equation (1) and (2),

a²sin²θ + b²cos²θ +2abinθ.cosθ + a²cos²θ + b²sin²θ -2absinθ.cosθ = c² + x²

⇒(a² + b²)cos²θ + (a² +b²)sin²θ = c² + x²

⇒(a² + b²)[sin²θ + cos²θ ] = c² + x²

⇒(a² + b²) = c² + x² [∵ sin²x + cos²x = 1 ]

⇒(a² + b² - c²) = x²

Take square root both sides,

√(a²+b²-c²) =x

Hence, acosθ - bsinθ =√(a²+b²-c²)

Similar questions