Math, asked by rahulsingh6484, 1 year ago

a sin theta + b cos theta equals to C prove that A cos theta minus B sin theta equals to under root a square + b square minus C square​

Answers

Answered by zanmeinin7
14

Answer:

asinθ + bcosθ = c

taking square both sides,

(asinθ + bcosθ)² = c²

⇒a²sin²θ + b²cos²θ + 2absinθ.cosθ = c² --------(1)

Let acosθ - bsinθ = x

Squaring both sides

(acosθ - bsinθ)² = x²

⇒a²cos²θ + b²sin²θ -2absinθ.cosθ = x² ------(2)

Add equation (1) and (2),

a²sin²θ + b²cos²θ +2abinθ.cosθ + a²cos²θ + b²sin²θ -2absinθ.cosθ = c² + x²

⇒(a² + b²)cos²θ + (a² +b²)sin²θ = c² + x²

⇒(a² + b²)[sin²θ + cos²θ ] = c² + x²

⇒(a² + b²) = c² + x² [∵ sin²x + cos²x = 1 ]

⇒(a² + b² - c²) = x²

Take square root both sides,

±underoot a^{2} +b^{2}-c^{2}=x

Hence, acosθ - bsinθ = underoota^{2}+b^{2}-c^{2}

Answered by shiva123490
4

hope it is helpful to you

Attachments:
Similar questions