a=(sin theta- cos theta)^4,b=sin^6 theta+cos^6 theta and c=(sin theta +cos theta)^2, then the value of √3a+4b+6c lies between
Answers
Answered by
7
√3a+4b+6c = √13 when a = (Sinθ - Cosθ)⁴ , b = Sin⁶θ + Cos⁶θ & c = (Sinθ + Cosθ)²
Step-by-step explanation:
a = (Sinθ - Cosθ)⁴
=>a = ((Sinθ - Cosθ)²)²
=> a = (Sin²θ + Cos²θ - 2SinθCosθ)²
=> a = (1 - 2SinθCosθ)²
=> a = 1 + 4Sin²θCos²θ - 4SinθCosθ
b = Sin⁶θ + Cos⁶θ
using x³ + y³ = (x + y)³ - 3xy(x + y)
x = Sin²θ & y = Cos²θ
=> b = (Sin²θ + Cos²θ)³ - 3(Sin²θ * Cos²θ)(Sin²θ + Cos²θ)
=> b = 1 - 3Sin²θCos²θ
c = (Sinθ + Cosθ)²
=> c = 1 + 2SinθCosθ
3a + 4b + 6c
= 3 + 12Sin²θCos²θ - 12SinθCosθ + 4 - 12Sin²θCos²θ + 6 + 12SinθCosθ
= 13
√3a+4b+6c = √13
Learn More:
formula
https://brainly.in/question/7500230
Answered by
2
So the value of is
Step-by-step explanation:
Given;
, and
From,
⇒
⇒ (∵)
⇒ (∵)
⇒
And,
⇒
⇒ (using )
⇒
Also,
⇒
⇒
Now,
Plug all the values in above equation;
Therefore the value of is
Similar questions
Chemistry,
5 months ago
Computer Science,
5 months ago
Math,
11 months ago
Science,
11 months ago
Science,
1 year ago