Math, asked by sandip1994, 7 months ago

a sinx + b cosx= a cosecx + b secx, then prove that the value of each side is (a^2/3 - b^2/3)√(a^2/3 + b^2/3)​

Answers

Answered by EnchantedGirl
38

\tt \underline{\underline{\red{Given:-}}}

\\

  • a sinx + b cosx = a cosecx + b secx

\\

\tt \underline{\underline{\green{To \: Prove:-}}}

\\

 \bullet \tt \:  (a^{2/3} - b^{2/3}) \sqrt{(a^{2/3 }+ b^{2/3})}

\\

\tt \underline{\underline{\orange{Proof:-}}}

\\

 \tt \hookrightarrow \: a \: sinx + b \: cosx = a \: cosecx + b \: secx \\  \\  \\  \hookrightarrow \tt a \: sinx - a \: cosecx  + b \: cosx - b \: secx = 0 \\  \\  \\ \\ \hookrightarrow \tt \: a(sinx -  \frac{1}{sinx} ) + b(cosx -  \frac{1}{cosx} ) = 0 \\  \\  \\ \\ \hookrightarrow \tt \:  \frac{  - a \:  {cos}^{2} x}{ {sin}^{2}x } -  \frac{b \:  {sin}^{2}x }{cosx}  = 0 \\  \\  \\ \\ \hookrightarrow \tt \:  - a \:  {cos}^{3} x - b {sin}^{3} x = 0 \\  \\  \\ \\ \hookrightarrow \tt \:  - a \: cos {}^{3} x \:  = b \:  {sin}^{3} x \\  \\  \\ \\ \hookrightarrow \tt \: tan {}^{3} x =  -  \frac{a}{b}  \\  \\  \\\\ \tt  \hookrightarrow tanx =  - ( { \frac{a}{b} })^{ \frac{1}{3} }  \\  \\  \\

\\

Now,

\\

  \tt \implies \: a \: sinx+ b \: cosx = cosx(a \: tanx + b) \\  \\  \\  =  \tt \frac{1}{ \sqrt{1 +  \frac{ {a}^{ \frac{2}{3} } }{ {b}^{ \frac{2}{3} } } } } ( \frac{ { - a}^{ \frac{4}{3} } +  {b}^{ \frac{4}{3} }  }{ {b}^{ \frac{1}{3} } } ) \\  \\  \\  =  \tt \frac{ - {a}^{ \frac{4}{3} }   +  {b}^{ \frac{4}{3} } }{ \sqrt{ {a}^{ \frac{2}{3} }  +  {b}^{ \frac{2}{3} } } }  \\  \\  \\  =   \tt \: \frac{( {b}^{ \frac{2}{3} } +  {a}^{ \frac{2}{3} })( { {b}^{ \frac{2}{3} } } -  {a}^{ \frac{2}{3} }  ) }{ \sqrt{ {b}^{ \frac{2}{3}  }  +  {a}^{ \frac{2}{3} } } }  \\  \\  \\  \implies \bigstar \boxed{  \tt \:  {a}^{ \frac{2}{3} }  -  {b}^{ \frac{2}{3} }  \sqrt{ {a}^{ \frac{2}{3} } +  {b}^{ \frac{2}{3} }  } } \\  \\  \\ \\

Hence proved !

\\

_________________________________________

Similar questions