Physics, asked by Kingfisher526, 1 year ago

A small ball rolls horizontally off the edge of a tabletop that is 1.23 m high. It strikes the floor at a point 1.49 m horizontally away from the edge of the table. (a) How long is the ball in the air? (b) What is its speed at the instant it leaves ?

Answers

Answered by Anonymous
9
\sf{\underline{We\:know\:that:}}

The ball starts with the vertical velocity.

\sf{\underline{That\:is:}}

\boxed{\sf{v_{0y} = 0} } falls freely to the ground, from a distance of 1.23 m high.

\sf{\underline{So:}}

The ball falls from the position of:

\boxed{\sf{y_{0} = 1.23 \: m}}

\sf{\underline{We\:know\:that:}}

\boxed{\sf{y = y_{0} + v_{0y}t - \frac{1}{2} {gt}^{2}}}

\sf{\underline{That\:is:}}

\boxed{\sf{y = - \frac{1}{2} {gt}^{2}}}

\sf{\underline{Here:}} y = - 1.23 m

\sf{\underline{Therefore:}}

\sf{\underline{The\:time\:taken\:to\:fall:}}

\implies \sf{t ^{2} = \frac{2(1.23)}{9.8} }

\implies \sf{t ^{2} = \frac{2.46}{9.8}}

\implies  \sf{{t}^{2} = 0.25}

\implies \sf{t = \sqrt{0.25} }

\implies \sf{t = 0.5}

\sf{\underline{So:}} \boxed{\sf{t = 0.5\:s}}

\sf{\underline{Now:}}

We can easily calculate the initial horizontal velocity of the ball.

\sf{\underline{We\:know\:that}}

\boxed{\sf{x = x_{0} + v_{0x} t}}

\sf{\underline{So:}}

\implies \sf{v_{0x} = \frac{x}{t}}

\implies \sf{v_{0x} = \frac{1.49}{0.5}}

\implies \sf{v_{0x} = 2.98 \: m/s}

\sf{\underline{Final\:answer:}}

(a) \sf{0.5\:s}

(b) \sf{2.98 \: m/s}
Answered by XxArmyGirlxX
0

Using h= ½ gt², we have

h_{AB}= \frac{1}{2} gt^2_{AC}

or \: t_{AC} =   \sqrt\frac{2h_{AB}}{g}

 =   \sqrt \frac{2 \times 4}{9.8} = 0.9s

Further, BC=vt_{AB}

or \: v= \frac{BC}{t_{AC}} =  \frac{5.0}{0.9} =5.55m/s

Similar questions