Physics, asked by chinnu4005, 1 year ago

A small ring of mass m is attached at an end of a light string, the other end of which is tied to a small block B of mass 2m. The ring is free to move on a fixed smooth horizontal rod. Find the velocity of the ring when the string becomes vertical.?

Answers

Answered by AditiHegde
5

Given:

A small ring of mass m is attached at an end of a light string, the other end of which is tied to a small block B of mass 2m.

The ring is free to move on a fixed smooth horizontal rod.

To find:

Find the velocity of the ring when the string becomes vertical.?

Solution:

From given, we have,

The mass of small ring = m

The mass of small block = 2m

The distance between the ring and block = l

We use the conservation of energy formula,

1/2 mv² = mgl + 1/3 mgl

1/2 mv² = 4/3 mgl

⇒ v² = 8/3 gl

∴ v = √(8/3 gl)

Hence the velocity of the ring when the string becomes vertical.

Answered by jay10125r
2

Answer:

Explanation:

As no external force is applied on the ring, string, mass system in x-direction.

So, conserving momentum in x-direction

⇒0=mv  1  −2mV^2⇒v  1  =2V2  ........(i)

Taking datum at rod where potential energy is zero.

⇒0=  21  mv  1 2  +  2 1  (2m)v  2 2  −2mgl ⇒2mgl=  2 1  mv 1 2  +mv  2 2 ​  

=2 1  mv  1 2  +m 4 v  12

​ (as v 2​ =  2 v  1 from (i))

2mgl=  4 3 mv  1

2

​  

 

⇒v  

1

​  

=  

3

8

​  

gl

​  

 

⇒v  

2

​  

=  

2

v  

1

​  

 

​  

=  

3

2

​  

gl

​  

 

Now relative velocity of mass with respect to ring in final condition

v  

m  

1

​  

r

​  

=v  

m  

1

​  

g

​  

−v  

r  

1

​  

g

​  

 

=−v  

2

​  

−v  

1

​  

 

=−  

3

2

​  

gl

​  

−  

3

8

​  

gl

​  

 

∣v  

m  

1

​  

r

​  

∣=  

gl

​  

(  

3

​  

 

2

​  

+  

8

​  

 

​  

).

Now drawing FBD of mass in final condition.

⇒T−2mg=2m  

l

(v  

m  

1

​  

r

​  

)  

2

 

​  

 

⇒T−2mg=2m  

l

gl

​  

(  

3

​  

 

2

​  

+  

8

​  

 

​  

)  

2

 

⇒T=2mg  

​  

1+(  

3

​  

 

2

​  

+  

8

​  

 

​  

)  

2

 

​  

 

=14mg

=14×  

2

1

​  

×10 (Taking g=10m/s  

2

)

T=70N.

solution

Similar questions